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Experimentally naive mice matched the proportions of their temporal investments (visit durations) in
two feeding hoppers to the proportions of the food income (pellets per unit session time) derived from
them in three experiments that varied the coupling between the behavioral investment and food
income, from no coupling to strict coupling. Matching was observed from the outset; it did not improve
with training. When the numbers of pellets received were proportional to time invested, investment was
unstable, swinging abruptly from sustained, almost complete investment in one hopper, to sustained,
almost complete investment in the other—in the absence of appropriate local fluctuations in returns
(pellets obtained per time invested). The abruptness of the swings strongly constrains possible models.
We suggest that matching reflects an innate (unconditioned) program that matches the ratio of
expected visit durations to the ratio between the current estimates of expected incomes. A model that
processes the income stream looking for changes in the income and generates discontinuous income
estimates when a change is detected is shown to account for salient features of the data.
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_______________________________________________________________________________

Matching is a widely observed behav-
ioral phenomenon in which the pro-
portion of a subject’s foraging time or ef-
fort invested in an option approximately
matches the income (rewards per unit
time) from that option relative to the total
income (Herrnstein, 1961). In symbols:
Ti

.X i~n

i~1
Ti & Ii

.X i~n

i~1
Ii , where Ti is the

time invested in the ith option and Ii is the
income from the ith option (e.g., number of
food pellets obtained per session). In the
typical matching experiment, where the num-
ber of options is 2, the formula reduces to the
familiar T1/(T1 + T2) < I1/(I1 + I2). This
formula is observed to apply in free-operant
paradigms, where subjects can move back and
forth between locations where food is found
infrequently and unpredictably. We call the
proportions in this approximate equation
Herrnstein fractions. The proportion on the left,

T1/(T1 + T2), is the investment fraction—the
relative amount of time devoted to a behavioral
option. The proportion on the right, I1/(I1 +
I2), is the income fraction. The differences
between complementary fractions—I1/(I1 +
I2) 2 I2/(I1 + I2) 5 (I1 2 I2)/(I1 + I2) and
T1/(T1 + T2) 2 T2/(T1 + T2) 5 (T1 2 T2)/(T1

+ T2)—are the income imbalance and the
investment imbalance. They range from +1 (all
income from, or all investment in the first
option) to 21 (all income from, or all
investment in the second option). Matching
also may be thought of as matching the
investment imbalance to the income imbal-
ance.

In our experimental arrangement for study-
ing matching, mice move back and forth
between two feeding hoppers, interrupting
infrared beams when they poke their heads
into the hoppers. At unpredictable intervals,
the interruption of a beam triggers the release
of a small food pellet into that hopper. The
most commonly used reward-scheduling algo-
rithm in matching studies is concurrent vari-
able intervals. In our version of this paradigm,
the intervals are programmed according to
a random interval (RI) schedule: The arming
of the pellet-release trigger for a hopper is
scheduled by a random rate (Poisson) process.
The process at a given location stops when it
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sets up a pay-off (arms the infrared beam
trigger) and resumes when the subject harvests
it (interrupts the beam, triggering the release
of a pellet). Thus, pellet delivery, once it is set
up (once the trigger is armed), blocks the
setting up of further deliveries at that location
until the pellet already set up there has been
harvested.

A visit cycle consists of a visit to one hopper
followed by a visit to the other, with an arrival
back at the first hopper completing the cycle.
We measure the durations of the two visits
within each cycle. When, as generally happens,
the period (average duration) of a visit cycle is
less than the expected interval between pellet
set-ups, the proportions of the subject’s time
allotted to visits at the two locations have little
effect on the proportions of total income it
derives from them. Return on investment is
defined as income divided by investment, Ri 5
Ii/Ti, that is, the number of pellets obtained
from a feeding hopper divided by the amount
of time spent visiting it. On typical concurrent
schedules such as ours, there is negative
feedback between the subject’s behavioral
investments (the relative durations of the two
visits) and the returns realized from them.
This occurs because increased investment in
an alternative does not result in proportional
gains in income from that alternative: the
contingencies maintain a more-or-less con-
stant relative payoff in the face of different
allocations.

The distinction between income and return
is critical. Both quantities are rates—amount
of food obtained per unit time—but the time
base for income is the time on a clock that
runs whenever the subject is in the foraging
environment (the experimental chamber),
whereas the time base for the return from
a hopper is the time on a clock that runs only
while the subject is visiting that hopper. The
distinction between the income from a hopper
and the return from a hopper corresponds
roughly to the distinction often made between
overall, or global, reinforcement rate (in-
come) and local reinforcement rate (return).
The correspondence is imperfect, however,
because the overall reinforcement rate is
usually computed only from session totals. In
our data analysis, we compute and plot income
reinforcement-by-reinforcement, without re-
gard to how much time the animal has
invested to obtain the reinforcement. There-

fore, income is just as temporally localized as
return.

Matching equates returns, not incomes. The
matching formula given above is algebraically
equivalent to I1/T1 < I2/T2. Thus, matching
yields equal returns by proportioning invest-
ments to incomes. When a mouse in our
experimental arrangement matches, the num-
bers of pellets obtained per unit of time that it
spends at each of two feeding hoppers are
approximately equal. When it is not matching,
the amount of reward it gets per unit time
invested in one side is greater than the amount
of reward it gets per unit time invested in the
other. It is reasonable to suppose, therefore,
that matching results from learned adjust-
ments in relative behavioral strengths, made
in reaction to the unbalanced returns from
earlier nonmatching behavior. This is the
assumption from which modeling efforts have
typically proceeded (Davis, Staddon, Machado,
& Palmer, 1993; Herrnstein & Prelec, 1991;
Hinson & Staddon, 1983; Lea & Dow, 1984).
The alternative, first suggested by Heyman
(1982), is that matching is unconditioned
behavior—an innate behavioral program
based on the income records alone, with no
account taken of the behavior that produced
those incomes. In this work, we attempt to
decide between these alternatives.

The distinction between an income-based
model and a return-based model may be
understood in associative terms as follows:
Consider two hopper locations, L1 and L2,
and the behaviors of going to and/or poking
into each of them, which we denote by B1 and
B2. These behaviors produce outcomes (pellet
deliveries), O1 and O2. The subjects’ experi-
ences in this environment may be thought to
produce an associative structure containing
stimulus–response associations (L1–B1 and L2–
B2), response–outcome associations (B1–O1

and B2–O2), and stimulus-outcome associa-
tions (L1–O1 and L2–O2). Return-based mod-
els of matching behavior attribute the behav-
ior to the relative strengths of either the
stimulus–response associations or the re-
sponse–outcome associations.

The law of effect has traditionally been
taken to imply that the effect of the outcomes
produced is to alter the strengths of the
stimulus–response associations or relations.
Neo-behaviorists (that is, Hullians) interpret
the law of effect as a manifestation of the
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stamping in of S–R associations by reinforcing
outcomes in instrumental conditioning,
whereas in Skinnerian terms, where
Sd*R2.SR is the unit of analysis, the law of
effect refers to the strengthening effect of the
R2. SR contingency on the Sd*R ten-
dency. The term ‘reinforcement’ as a synonym
for reward or punishment connotes the pre-
sumed strengthening of a tendency to perform
the response in the presence of the stimulus
situation. Because we question that interpre-
tation, we prefer the term ‘reward,’ although
we will use ‘reinforcement’ when avoiding it
would be awkward. In the reinforcement-
learning tradition in contemporary computer
science, it is more natural to interpret the law
of effect as the modification of response–
outcome associations, because the behavior
observed is taken to be a consequence of the
values assigned to the behavioral options by
some algorithm (e.g., the temporal-difference
algorithm; see Sutton & Barto, 1998) applied
to the outcomes they have produced. By
contrast, an income-based model asserts that
the observed behavior depends only on the
stimulus–outcome (L–O) associations. In both
the neo-behaviorist and operant conditioning
frameworks, this association would be said to
determine the secondary reinforcing power of
a location. From a computer science reinforce-
ment-learning perspective, the subject’s model
of the world contains experience-derived
estimates of the incomes associated with
different locations. On the hypothesis that
matching is driven by income rather than
return, the subject would be said to have an
innate and immutable policy of prorating the
expected durations of its visits to those
locations in accord with its current estimates
of the expected incomes.

Hill-Climbing

Return-based models take matching to be
a consequence of the law of effect: when one
investment (behavior) produces more of a de-
sirable effect (reward) per unit invested than
another, the subject adjusts its investment ratio
(the relative amounts of time spent at each
hopper) so as to invest more in the more
profitable alternative and less in the less
profitable. With random-interval schedules,
shifting the investment proportions in favor
of the more profitable alternative reduces the
difference in the returns, because, provided it

cycles often enough between the locations,
increasing the proportion of each visit cycle
spent at one location does not increase (by
much) the number of pellets obtained there,
nor decrease by much the number of pellets
obtained at the other location. Thus, relative
income (the ratio of the pellets obtained) is
little affected by the relative investment (the
ratio of the average visit durations). The
return is income (pellets obtained) divided
by investment (time spent). Therefore, as the
relative investment in the richer location
increases while the relative income stays
roughly constant, the relative return from the
richer location goes down and the relative
return from the poorer location goes up. In
other words, there is negative feedback
from the investment ratio (a behavioral vari-
able) to the return ratio (an input variable).
Matching is assumed to be the equilibrium
state of this negative-feedback process: the
shifting of investment toward the more profit-
able location continues until the returns are
equal. At that point, the relative return (R1/
R2) is 1/1.

The discovery by trial and error of the
investment-ratio that equates returns is a hill-
climbing process (Hinson & Staddon, 1983).
Hill-climbing processes, like negative feedback
processes in general, are slow. To reach the
equilibrium (the top of the hill), the subject
must try an apportionment of its investments,
compare the returns obtained, adjust the
apportionment in favor of the behavior pro-
ducing the greater return, and so on, re-
peatedly until it hits on the apportionment
that equates the returns. Return (the food
obtained divided by the time spent obtaining
it) is an extremely noisy variable when
computed visit by visit (small investment by
small investment). It requires a considerable
number of visits even to determine the sign of
a difference in two average returns with any
reliability, let alone to estimate the magnitude
of the difference in the average returns. Thus,
the comparison of average returns following
an adjustment—to determine which return is
greater—requires averaging returns over an
interval much longer than the expected
intervals between pellets. Several adjustment-
evaluation cycles are required before a new
equilibrium is reached, with each adjustment
cycle lasting for many visit cycles. The process
of equilibration is slow, because the hill must
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be climbed one step at a time; there are no
helicopter rides to the top.

Pure Feed-Forward

Gallistel, Mark, King, and Latham (2001)
showed that when step changes in the relative
richness of the Poisson scheduling process are
frequent, the changes in the apportionment of
the investment (changes in the expected visit
durations at each location) are themselves
step-like (cf. Higa, Thaw, & Staddon, 1993).
The shift from expected visit durations appro-
priate to the prechange schedules to expected
visit durations appropriate to the postchange
schedules—from the top of the old hill to the
top of the new hill—goes to completion within
the span of a few visit cycles. Subjects
sometimes completely change the expected
durations of their visits from one visit cycle to
the next, a maximally abrupt adjustment (see,
for example, Gallistel et al., 2001, Figure 6).
The abruptness of the adjustments—the fact
that the top of the new hill is not reached by
climbing it—suggests a purely feed-forward
model of the kind implied by Heyman’s
(1982) suggestion that matching is uncondi-
tioned behavior.

Gallistel et al. (2001) amplify on Heyman’s
suggestion by specifying in mathematical form
an innate behavior-generating program de-
pendent for its execution only on estimates of
expected incomes. The model has the follow-
ing components:

1) An on-line, real-time mechanism (algo-
rithm) for detecting changes in income
(in the present case, changes in the
numbers of pellets obtained from a hopper
per unit of session time).

2) A closely related mechanism for estimat-
ing the currently expected income: When
it detects a change, the algorithm gives an
estimate of the earlier moment at which it
estimates the change to have occurred.
The income experienced during the (usu-
ally small) retrospective interval from the
moment-of-change detection back to the
estimated moment of change becomes the
new (current) estimate of the expected
income. Thus, income estimates are not
continually updated. Successive income
estimates in this model almost always
come from nonoverlapping income sam-
ples, which is why the change from an old

estimate to a new very different estimate
can occur in a single step.

3) A mathematically specified mapping of
income estimates into predicted distribu-
tions of visit durations. In accord with
experimental findings, the distributions of
visit durations are assumed to be expo-
nential (Gallistel et al., 2001; Gibbon,
1995). This means that the probability of
a subject’s leaving the hopper it is cur-
rently investigating is independent of how
long it has been there (Heyman, 1982;
Nevin, 1979; Real, 1983)1. It also means
that visit durations are distributed as they
would be if departures were decided on by
continually flipping a biased coin until it
came up heads. Specifying the bias on the
coin and the flipping frequency fully
specifies the resulting behavior, giving
not only the expectation (average visit
duration) but also the exponential distri-
bution of visit durations.

The change-detecting algorithm plays two
critical roles in this paper. First, we assume it as
a component of our mathematical model of
the machinery that generates the observed
behavior. Second, we also use it to find change
points in the cumulative records by which we
portray the evolution of matching behavior
under different reward-scheduling conditions.
The algorithm was first described and used by
Gallistel et al. (2001) in the analysis and
explanation of matching behavior. It sub-
sequently has been generalized for use in
finding change points in the expected value of
almost any kind of sequentially obtained data
(Balsam, Fairhurst, & Gallistel, in press;
Gallistel, Balsam, & Fairhurst, 2004; Gottlieb,
2005, 2006; Papachristos & Gallistel, 2006;
Paton, Belova, Morrison, & Salzman, 2006).

We explain the algorithm as it operates in
our matching model by reference to Figure 1,
which portrays the cumulative record, n(t), of
pellets obtained spanning a change in the rate

1 It was this finding that led Heyman (1982) to suggest
that matching was unconditioned behavior. This finding,
that the leaving probability does not depend on elapsed
visit time, is inconsistent with the assumption that leaving
is sensitive to the reinforcement contingencies in concur-
rent RI RI schedules because the longer the subject has
been at one location, the more probable it is that leaving it
for the other location will be reinforced.
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at which they became available: In this
simulation, the first three pellets came from
a Poisson process delivering on average one
pellet/min; the last three were delivered by
a Poisson process with an average rate of 0.1
pellet/min (an expected interval of 10 min
between pellets). The real-time algorithm
analyzes the incoming data pellet by pellet.
In fact, it operates continuously, testing for
change even in the absence of any further
pellets. (That is why it can detect the apparent
cessation of income—see later simulation.)
The graph portrays the situation immediately
after the sixth pellet is obtained.

The algorithm continuously tests the plausi-
bility of the null hypothesis that there has been
no change in the rate at which pellets are
obtained. On that hypothesis, the best esti-
mate of the current rate is the number of
pellets obtained (which is six in Figure 1)
divided by the interval over which they have
been obtained (which is t 5 18.21 min in
Figure 1). This rate, r̄, is the slope of the trend
line that connects the origin of the cumulative
record to its current value (see Figure 1). If
there has been a change, the moment in the

past at which it occurred may be estimated by
finding the moment tm at which the cumula-
tive record deviates maximally from this
straight line (see ‘‘max dev’’ on Figure 1).
This is the moment, tm, within the retrospec-
tive interval from t back to 0 at which the
quantity n(t) 2 r̄t is maximal.

The algorithm asks whether the interval t 2
tm from tm to the present moment contains its
fair share of the pellets delivered in the
interval t from 0 to t (because the origin is at
0, the duration of the interval up to t is simply
t). If the six pellets delivered in the interval t
are distributed at random within that interval,
then the probability of finding any one of
them within the subinterval t 2 tm is p 5 (t 2
tm)/t 5 16.2/18.21 5 .89. In other words,
roughly 90% or 5.4 of the 6 pellets in the
example in Figure 1 ought to be found within
that interval, but in fact only three are found
there. What are the odds, (1 2 P)/P, of this
disparity, where P is the probability of observ-
ing a number that small or smaller? P is
calculated from the cumulative binomial func-
tion, with n(t) as the number of observations
and p as the probability of a success.

For technical reasons, the algorithm asks
what is the log of the odds, log[(1 2 p)/p].
The log of the odds against the no-change
hypothesis is called the logit. It is a measure of
the strength of the evidence that there has
been a change. The greater its absolute value,
the greater the evidence for a change. The
sign of the logit indicates the direction of the
change. Again for technical reasons, the algo-
rithm in fact uses what we call the pseudo-logit
rather than the true logit; that is, it computes
the log of the ratio of the probability of finding
that many (i.e., three) pellets or fewer (which
probability < .021) to the probability of finding
that many or more (< .998). The logit is not
well behaved when the observed number of
rewards is 0 and the expected number is also
very close to 0, whereas the pseudo-logit is,
because the pseudo-logit, unlike the logit,
includes in both the numerator and the de-
nominator of the odds ratio the probability of
getting exactly the observed outcome. Notice
that, for that reason, the probabilities in the
numerator and denominator of the pseudo-
logit, unlike the complementary probabilities
in a true logit, do not sum to 1.

In the example in Figure 1, the nominal
odds against the no-change hypothesis are

Fig. 1. Cumulative number of pellets obtained as
a function of time. The change-detecting algorithm
operates on this function, as it evolves. In this instance,
with simulated data, its evolution spans a step change in
the underlying random rate. The current moment is t ; the
no-change (constant rate) hypothesis is represented by the
thin straight line from the origin to the current value of
n(t); tm is the past moment at which n(t) deviates
maximally from the value expected on the constant-
rate hypothesis.
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almost 50:12 (the pseudo-logit is log10[.021/
.998] 5 21.68; the true logit is log10[.021/
.979] 5 21.67; the pseudo-logit is trivially
different from the logit when the probability
of getting exactly the observed value is low).
Whether this evidence is sufficient to decide
that there has been a change in the income
depends on the decision criterion, which is
one of two free parameters in the model. Also,
as with any other hypothesis-testing statistic,
a decision criterion (commonly called an
alpha level) must be specified when the
algorithm is used as a methodological tool in
the analysis of experimentally obtained cumu-
lative records. (As already noted, the algo-
rithm is both a critical component of our
model and a tool that we use to find change
points in cumulative records in our later data
analyses.)

A pseudo-logit criterion of 1.5 corresponds
(approximately) to an alpha level of .05. If we
assume that level in the present illustrative
example, then the decision criterion is ex-
ceeded, and so a change is detected at the
moment t. This moment t is the moment of
detection, not the moment at which the
change is estimated to have occurred, which
is tm. The new estimate of the income from
this location, Ilatest, which is the estimate that
will be used by the mapping from income
estimates to behavior until such time as
another change is detected, is the number of
pellets obtained in the retrospective interval
from t back to tm divided by the duration of
that interval: Ilatest 5 3/(t 2 tm) 5 3/16.2 5
0.19 pellets/min.

Note that this new estimate is off by a factor
of almost 2, because the true rate in the
second part of the simulated sequence was 0.1
pellets/min. Rather large errors in the esti-
mated rates are to be expected in a model that
assumes that the estimates are based on small
samples. In our view, this is a feature not
a defect in our model. It explains why
matching when measured carefully over mod-
est amounts of time in single subjects is only
approximately true, as will be seen in the data

we report. Deviations this large from true
matching are commonly observed.

The detection of a change in the income
stream has two consequences: As already
noted, it changes the estimate of the current
income. Secondly, it truncates at the estimated
point of change the data on which the change-
detecting algorithm thereafter operates. The
algorithm continues to operate after it has
detected a change, but it operates only on the
data received after the moment at which it
estimated the last change to have occurred.
Thus, the origin of the cumulative record it
operates on is always the moment just after the
last change it detected.

The algorithm for detecting changes in
income and obtaining small-sample estimates
of the current incomes is our model of how
subjects process their experience. The second
part of our model specifies the relation
between the results of this processing (the
income estimates) and the observed temporal
investments. This mapping from income esti-
mates to observed visit durations is determined
by two constraining equations:

�TT1=�TT2 ~ ÎI1

�
ÎI2 ð1Þ

l1 z l2 ~ 1
�

�TT1 z 1
�

�TT2 ~ a ÎI1 z ÎI2

� �
ð2Þ

Equation 1 takes matching to be an innate
behavioral program. It stipulates that the ratio
of the expected (average) duration of the visits
to Location 1 to the expected duration of the
visits to Location 2 be set equal to the ratio of
the current income estimates for those loca-
tions. The hats (‘) over the income symbols on
the right side of Equation 1 do double duty:
They indicate that these are estimates (a
common statistical notation) and, moreover,
that they are assumed quantities, presumably
located in the brain, which cannot be directly
observed or measured, unlike the average visit
durations on the left of the equation, which
are what we measure.

Equation 2 makes the sum of the leaving
rates, l1 and l2, proportional to the sum of the
income estimates. This adjusts the temporal
scale of the visiting behavior to the temporal
scale of the environment. The more often
pellets are set up at one or the other location,
the more rapidly the subject must circulate

2 See Footnote 3 on why this should not be interpreted
as equivalent to a significance level or a Bayes factor. It is
functionally equivalent in the sense that it is a measure of
the strength of the evidence. In many cases, including the
present one, the computation can be reformulated so as to
yield a true Bayes factor, but the practical effect of this is
only to change the range of useful decision criteria.
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between the locations to harvest them effi-
ciently. If it circulates too slowly, set-up pellets
go unharvested for long periods; if it circulates
too rapidly, it runs back and forth repeatedly
to no avail. Subjects should and do scale the
rate at which they cycle between the locations
to the rate at which pellets are set-up (Gallistel
et al., 2001). This scaling explains the seem-
ingly paradoxical Belke (1992) findings on
preference transfer (see Gibbon, 1995). It is
closely related to if not identical with Killeen’s
state of arousal that varies with reinforcement
density (Killeen & Bizo, 1998; Killeen, Hanson,
& Osborne, 1978).

There are only two free parameters in our
model: the decision criterion in the algorithm
that detects changes in income, and the
constant of proportionality, a, in Equation 2.
Plausible values of both are circumscribed.
The decision criterion must be reasonable,
which is to say roughly that its value should lie
between 1 and 6 (corresponding to alpha
levels between 0.1 and 0.0000013). The value
of a should be about 2, because the average
period of an appropriately scaled visit cycle
should be about half the expected interval
between pellets, taken without regard to
location.

Experimental Goals

The model just elaborated takes matching as
an innate behavioral program dependent on
experience only for the income estimates.
Therefore, matching should appear in the
naive subject as soon as the subject obtains any
data on relative incomes (cf. Davison & Baum,
2000; Shettleworth, Krebs, Stephens, & Gib-
bon, 1988). The first goal of the present
research is to determine whether matching is
immediately apparent in the foraging behavior

of the experimentally naive mouse under
widely varying schedule conditions.

One cannot assess matching in a naive
mouse until it is hopper trained, that is, until
it seeks for pellets in the feeding hoppers with
some regularity, and has begun to circulate
between the two hoppers. Therefore, our
second goal, which is a necessary preliminary
to tracking the appearance of matching, is
a characterization of the emergence of hopper
poking and rapid cycling between hoppers.

The schedule condition in which the in-
come (number of pellets) obtained from
a hopper is directly proportional to the
investment in that hopper (time spent poking
into and out of it) is of particular interest.
When the schedules reward one response
more often than the other—in our terms,
when the return from one location is higher
than from the other—then, as Herrnstein and
Loveland (1975) pointed out, there are only
two patterns of behavior consistent with the
matching law: exclusive preference for the
better alternative or exclusive preference for
the poorer alternative. In either case, the
investment fractions match the income frac-
tions because both ratios are at their limiting
values of 1 or 0. Any other investment pattern
is inconsistent with matching, because the
experienced income ratio is the investment
ratio multiplied by the scheduled return ratio:

I1

I2
~

R1

R2

� �
T1

T2

� �
:

When the scheduled return ratio (R1/R2) is
not 1/1, then the income ratio (I1/I2) and the
investment ratio (T1/T2) can be equal only if
they are both infinite or both 0.

This critical, purely analytic point is some-
times misunderstood to imply that matching
must be observed under these conditions for
purely analytic reasons. This is a misunder-
standing. The scheduling arrangement does
not in any way constrain the behavioral result.
Matching may or may not be observed. The
analytic point is that the only way it can be
observed is if the animal chooses to spend its
time almost exclusively at one location or the
other. For that reason, how subjects behave
under this scheduling condition is a critical
test of the hypothesis that matching is innate.
Thus, a third goal of the present research is to
determine whether the predicted investment

3 Useful decision criteria tend to be higher in change-
detection than in other statistical decision settings because
there is an inescapable multiple-comparisons problem in
change detection: the longer one observes a stationary
(unchanging) random process (e.g., coin flipping), the
more certain it is that one will observe an improbable
sequence (e.g., 10 heads in a row). Thus, our algorithm
should not be used for obtaining significance levels. A
modified version of it might be used to compute the Bayes
factor in a relative likelihood analysis (Glover & Dixon,
2004), provided that one used an appropriate correction
for the additional free (data-derived) parameters in the
change model, such as the Schwartz criterion (Kass &
Raferty, 1995; Schwartz, 1978).
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pattern (almost exclusive investment in one
hopper or the other) is present from the
beginning in the experimentally naive mouse,
as it should be if matching is innate and
dependent only on estimated incomes.

Further, in our model the subject takes no
account of the impact of its behavior on its
income (no account of the B–O association;
where O is a measure of food obtained and B is
a measure of the behavior invested to obtain
it). Thus, our model predicts that when
income is proportional to investment, the
positive feedback from the investment ratio
to the income ratio should make the exclusive
preference for one location or the other
unstable. As we show later in a simulation,
random variations in the investment ratio from
one visit cycle to the next, together with the
random fluctuations in the pay-offs from those
visits, produce large fluctuations in relative
income. These behavior-dependent perturba-
tions in relative income feed back positively to
produce a still-greater behavioral shift in the
same direction. Thus, on our model, one
expects to see abrupt swings in preference,
from almost exclusive preference for one
hopper to almost exclusive preference for the
other. These abrupt swings are characteristic of
dynamic systems with destabilizing positive
feedback from output to input. Such swings
are counterintuitive because, as we will show,
the abandonment of a high-return hopper for
a low-return hopper need not be justified by any
local fluctuation in the returns. Such swings are
not predicted, so far as we can see, by any model
in which behavior is based on the evaluation of
returns, that is, on any assessment of the
amount of reward produced by a given amount
of behavior (the R2.SR contingency).

The situation in which reward depends on
investment is, we believe, the most natural
(ecologically valid) from the perspective of
both economic theory, with its focus on profit
(another word for return), and traditional
instrumental learning theory, with its focus on
R–O associations and the R2.SR contingency.
Yet, from the perspective of our model, this is
a quasipathological situation that should pro-
duce unstable behavior. Thus, the fourth goal
of the present research is to determine wheth-
er the predicted instability is in fact observed.

The fifth goal is to characterize the abrupt-
ness of the swings observed under the hypoth-
esized unstable condition (assuming that the

predicted instability is in fact observed) be-
cause, as already noted, the abruptness of large
changes in investment ratio is a strong con-
straint on models of matching.

Schedules of Reinforcement

In the experiments we now report, we
tracked the emergence of matching behavior
in experimentally naive mice under three
different schedules of reward. The schedules
varied in how closely relative income was tied
to relative investment.

The first schedule was the traditional con-
current random-interval (conc RI RI) schedule
with unlimited hold. At each location, pellets
are scheduled for delivery (set up) at the end
of intervals drawn from exponential distribu-
tions. These distributions are completely spec-
ified by their expectations, which are, in the
limit, equal to the average interval between the
harvesting of a pellet and the setting up of the
next delivery. The scheduling of pellet de-
liveries at the one location is independent of
the scheduling at the other. When a pellet is
set up at a given location, the scheduling of
further deliveries at that location stops, re-
suming only when the subject harvests the
already-set-up pellet.

With concurrent random interval schedules,
the coupling between investment and income
depends on the frequency with which the
subject visits the locations. This frequency may
be expected to increase in the course of
conditioning. If, in the early stages, when it is
still accustoming itself to the foraging environ-
ment, the subject visits the locations at inter-
vals substantially longer than the expected
interval to the next pellet setup, then a pellet
will usually be waiting for it whenever it tries
either location. Thus, regardless of the ex-
pectations of the two scheduling algorithms,
the subject will experience high returns and
approximately equal incomes from both loca-
tions, because it rarely visits (invests in)
a location, and when it does, it almost always
gets an immediate return. When the frequency
of visits increases so that the expected interval
between visits is less than the expected setup
interval, the returns decrease and the incomes
become schedule-limited. Then, the ratio of
the incomes (relative income) approximates
the ratio of the inverses of the schedule
expectancies (relative richness, that is, relative
set-up rates).
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Our second schedule made the incomes as
nearly as possible independent of the invest-
ments by allowing set-up pellets to accumulate
in a queue. The scheduling of further de-
liveries does not stop when a pellet is set up. If
subsequent pellets are set up before an earlier
one has been harvested, they join the queue.
When a visit is made, the entire queue is
delivered, one pellet after the other in rapid
succession. Provided only that the subject visits
each location at least occasionally (and sub-
jects always did), the income derived from
visiting a given location is always schedule
limited and independent of investment (how
much time the subject spent at a location).
This schedule clamps relative incomes, but not
relative returns. It does so, in effect, by varying
reward magnitude (number of pellets de-
livered as one reinforcement) from one re-
inforcement to the next so as to compensate
insofar as possible for the effects of the
subjects’ sampling behavior on the number
of pellets that it obtains from a hopper. Under
at least some conditions, matching also is seen
when reward magnitude is varied rather than
reinforcement frequency (Catania, 1963; Kel-
ler & Gollub, 1977; Leon & Gallistel, 1998;
Neuringer, 1967; but see Killeen, 1985).
Moreover, when both are varied, their effects
on the investment ratio combine multiplica-
tively (Keller & Gollub; Leon & Gallistel),
which means that increasing reward magni-
tude by some factor compensates for decreas-
ing reinforcement frequency by that same
factor.

The schedules in the third experiment went
to the opposite extreme: they made incomes
directly proportional to investments, because
the scheduling clock at a given location ran
only when the mouse was sampling (investing
in) that location, that is, only when the mouse
had its head in that hopper. This clamps
relative returns, but not relative incomes.

EXPERIMENT 1

We ran experimentally naive mice in stan-
dard mouse testing chambers with two active
feeding hoppers at opposite ends of a common
wall. The hoppers delivered pellets on concur-
rent random interval schedules contingent on
the mouse poking its nose into the hopper and
thereby interrupting an infrared beam across
the hopper opening. There was no chamber

familiarization or hopper training. The sched-
ules were in force when the experimentally
naive mice were first introduced to the
chambers and remained in force through 20
daily sessions.

METHOD

Subjects

Ten adult female C57Bl/6 (purchased from
Harlan, Indianapolis, Indiana, USA) mice
served as subjects. They were 12–15 weeks of
age and weighed 20–22 g when the experi-
ment began.

Apparatus

The experimental environments were Med
Associates mouse testing chambers, 22 3
18 cm in plan and 13 cm high, with two
opposing metal walls and the other two walls
of PlexiglasTM. Three feeding hoppers (Med
Associates ENV-203-20) were set into one
metal wall and a fourth was set into the middle
of the opposing metal wall, but only the two
extreme hoppers on the three-hopper side
were active. The interiors of the two active
hoppers were continuously illuminated by
lights within the active hoppers. The chambers
were enclosed within Med Associates sound-
attenuating boxes (ENV-022M), 56 3 36 3
38 cm in width, depth, and height. The
entrance to each hopper was monitored by
an infrared beam (IR), the interruption of
which delivered a pellet whenever the IR beam
was armed by the scheduling algorithm. If the
beam was already interrupted when the sched-
ule armed it, a pellet was delivered immedi-
ately. Otherwise, it was delivered at the first
interruption following the arming of the
beam. The pellets were Research Diets NOYES
Precision Pellets, PJAI-0020, Rodent Food
Pellet, Formula A/I, 20 mg.

Procedure

The mice were deprived of chow on the
evening before the day of the first session.
After each session, they were weighed and
given chow sufficient to keep them at 85% of
free-feeding body weight. The sessions lasted
only 25 min. In other experiments, with
longer sessions, we repeatedly had observed
a marked decrease in food-directed behavior
toward the end of sessions. Because this would
complicate the quantitative analysis of the
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development of matching, we hoped to avoid
it by keeping the sessions short.

The IR beams were armed by MED-PCH
software running on the WindowsH operating
system, with an algorithm that gives a geo-
metric approximation to a Poisson process. In
effect, it flips a coin at one-second intervals.
When the coin comes up heads, the beam is
armed. The coin flipping then halts and
remains halted until the armed beam is
interrupted by the mouse, at which point the
pellet is delivered, and the scheduling algo-
rithm (the coin flipping) resumes. The ex-
pected interval to the next arming is 1 over the
probability of the coin coming up heads. For
example, when the probability is 1/60, the
expected interval to the next arming is 60 s.
The distribution of arming intervals thus
generated is a geometric approximation to
the exponential distribution produced by
a continuous Poisson (random rate) process.
For 4 of the mice, the expected arming
intervals on both sides were 90 s (conc RI 90
RI 90); for 3, they were 60 s and 180 s (conc RI
60 RI 180) and for the remaining 3, they were
180 s and 60 s (conc RI 180 RI 60).

Behavioral Measures and Summary Statistics

The raw data record consisted of successive
event codes, recording the onsets and offsets
of IR beam interruptions and the delivery of
pellets, with time stamps specifying to the
nearest 20 ms the time at which the event
occurred (in seconds since session onset).
Using custom MatlabTM functions, we ex-
tracted from these records the duration and
frequency of pokes and pellets delivered. From
these basic measures, we computed proportion
of time spent poking and the visit durations. The
proportion of time spent poking specified
minute-by-minute the proportion of each
minute during which the head was in a feeding
hopper. The duration of a visit to Hopper i was
the interval from the onset of the first poke
there, after one or more pokes at j (the
opposite hopper), to the termination of the
last poke at i (prior to another poke at j). The
interval from the termination of the last poke
at i to the onset of the next poke at j was the
travel time. The measures of visit durations and
travel times parcel the session into four
mutually exclusive and exhaustive kinds of
intervals: visits to Hopper 1, travel from
Hopper 1 to Hopper 2, visits to Hopper 2,

and travel from Hopper 2 to Hopper 1. One
visit cycle consists of these four intervals in
sequence; its duration is their sum.

To track changes in these behavioral mea-
sures during the course of the experiment, we
made cumulative records of them, exploiting
Skinner’s (1976) insight that a change in the
mean value of a repeated measure is manifest
as a change in the slope of its cumulative
record. The cumulative record is the sum of all
the measurements made so far, plotted usually
as a function of either the number of the
measurement (1st, 2nd, 3rd, etc.) or cumulative
session time (cumulative exposure to the
experimental arrangement). The slope of this
plot is the average measure per trial or per
unit of time, that is, the average increment on
the y axis divided by whatever the increment
on the x axis is from one measurement to the
next.

The use of cumulative records resolves
a methodological paradox that arises when
one attempts to track changes in the average
value of successive measurements. In deter-
mining whether or not a subject is matching
the ratio of its average visit durations to the
ratio of the pellet incomes, one compares two
ratios (Ī1/Ī2 and T̄1/T̄2), each composed of
two averages. The averages are necessarily
taken over time (over repeated visits and
repeated feedings). If the ratios are assumed
to be stationary (unchanging in time), then
the longer the intervals over which the
averages are taken, the more precise the
estimates of the averages, hence the estimates
of the ratios, hence the power of the compar-
ison between the ratios. But if one is looking
for changes in the ratios—and particularly if
one wants to estimate how closely changes in
one ratio (T̄1/T̄2) track changes in the other
(Ī1/Ī2)—then averaging over long intervals is
antithetical to one’s goals. It smoothes out the
changes and makes it hard to say where they
occurred. If, for example, one follows the
common practice of averaging over entire
sessions, then one cannot determine whether
changes occur on a time scale shorter than the
duration of a session.

The use of cumulative records resolves this
methodological paradox. Cumulative records
enable one to see changes in averages without
averaging. If the generative process being
measured is stationary, then the cumulative
record of the measures it generates will have
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a constant slope, a slope equal to the average
value of a measurement. If there is a step
change (maximally abrupt change) in the
process generating whatever is being mea-
sured, then there will be an abrupt change in
slope. The abruptness of the change in the
slope is not smoothed away by averaging,
because the cumulative record is a display of
the raw data; nothing is averaged prior to
plotting it. That is why we make extensive use
of cumulative records in the analyses that
follow. We supplement this powerful method
of visualization with analyses using the algo-
rithm for finding changes in the slopes of
cumulative records that we described in the
Introduction. In using this algorithm to find

change points in our cumulative records, we
let the data suggest where the changes are, and
we only average between the changes, not
across them.

One measure of the intensity of a mouse’s
food foraging behavior is the proportion of
time it spends with its head in a feeding
hopper. We use this measure to track the
emergence of poking. The upper row of
Figure 2 plots for 3 representative subjects
the cumulative proportion of each minute that
one or another IR hopper-beam was inter-
rupted, as a function of cumulative session
time. We used the change-point algorithm to
parse the cumulative records into a sequence
of straight lines. The slopes of these straight

Fig. 2. Top row: Representative minute-by-minute cumulative records of poking proportion (proportion of each
minute during which an infrared beam was interrupted) for 3 representative mice. The small ovals (CPs) mark the
change points found by the change-point algorithm with a logit decision criterion of 4. Bottom row: The slopes of the
straight-line segments connecting the change points. These slopes are the mean poking proportion during the successive
segments of the parsed cumulative record. Bottom left panel: a 5 average poking proportion during the last 10 sessions;
o5onset of conditioned poking; f 5 mean poking proportion for the first segment after the onset. The f/a ratio is the
first fraction, a measure of the abruptness of a change.
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lines are plotted in the lower row of Figure 2.
These plots show the successive levels of
performance.

We parse the cumulative records into
successive straight-line segments in order to
derive descriptive summary statistics. As pre-
viously described, the parsing algorithm steps
through the record point-by-point, asking at
each point whether or not the data up to that
point justify the conclusion that there has
been a change prior to that point. It does so by
finding for each point the previous point that
departs maximally from the no-change line. It
takes that as the maximally likely estimate of
where a change if any occurred and computes
the log of the odds against the hypothesis that
the data on either side of this putative change
point come from the same distribution.

The odds computation depends on the
character of the data (binary, integer, or real
valued) and on a global assessment of how the
measure is distributed. In the case of the
minute-by-minute poking proportions, the
data are real valued and not normally distrib-
uted. Therefore, we use the distribution-free
two-sample Kolmogorov-Smirnov test to com-
pute the odds against the hypothesis that the
data up to a given point can be represented by
a single straight line. When the logit (log of
the odds) exceeds our decision criterion, the
record is truncated at the estimated point of
change, and the analysis begins anew, using
only the data after that point.

In parsing the records, we used logit de-
cision criteria of 2 and 4, which correspond to
alpha levels of .01 and .0001. The first criterion
(logit 52, p < .01) is a very sensitive one,
because the test is performed at each succes-
sive point in the record and these records have
hundreds of points. It detects transient
‘‘changes’’ that appear to the eye to be just
noise. The second criterion is 100 times less
sensitive; it detects only those changes that the
eye sees as changes. We use two decision
criteria in order to determine the effect of the
choice of a decision criterion on the resulting
summary statistics. Although the choice has
a large effect in some individual cases, its
impact on the summary statistics is generally
minimal (see dashed versus solid lines in
Figure 4). Hereafter, we usually only discuss
results obtained with the more conservative
criterion. The results from the use of the more
sensitive criterion are included in plots of

summary statistics to enable the reader to
assess the impact of making the parser more
sensitive.

The cumulative records of the minute-by-
minute poking proportion begin with a low
slope, because our experimentally naive sub-
jects initially spent little time probing the
hoppers. At some point during the first four
sessions, there was a more or less abrupt
increase in the poking proportion, indicated
by a sudden steepening of the cumulative
record. We call the point at which the slope
shows the first increase (as determined by the
parsing algorithm) the onset point (o in the
lower left panel of Figure 2).

The magnitude of the increase (f in lower
left panel of Figure 2) relative to the ‘‘asymp-
totic’’ level of responding is a measure of the
abruptness with which elevated rates of poking
appear. ‘Asymptotic’ is in warning quotes
because, as this selection of records shows,
postacquisition performance is not stable from
one 25-min session to the next. In Mouse 2, for
example, the postacquisition proportion of
time spent poking ranged from 38% to less
than 5%, with no clear tendency to increase
over sessions. (The proportion on the last two
sessions was 13%, the second lowest level of
postacquisition responding.) In Mouse 6,
there was an initial rapid rise to a high poking
proportion (29%) followed by a prolonged
decline, with the lowest postacquisition poking
proportion (12%) during the final two ses-
sions. Postacquisition instability in measures of
behavioral strength is seen in a variety of
conditioning paradigms when individual data
are analyzed (Gallistel et al., 2004; Papachris-
tos & Gallistel, 2006). (This within-subject
instability may be hidden by averaging across
subjects before plotting a learning curve,
a practice that misrepresents the form of the
curve in the individual subjects, see Gallistel et
al., 2004). Given the large unsystematic ses-
sion-to-session fluctuations in postacquisition
performance, it is not clear that there is a true
asymptote, a stable level of performance
attained and maintained by individual sub-
jects. However, to put the size of the initial
increase in perspective, it is necessary to have
an estimate of the average level of post-
acquisition performance. For this purpose,
we use the average level of performance over
the last 10 sessions (a in lower left panel).
Thus, our measure of abruptness is f/a, the
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ratio of the performance level after the onset
to the average level over the last 10 sessions.
We call this measure the first fraction.

The upper row of Figure 3 plots, for the
same 3 subjects, the cumulative number of visit
cycles as a function of session time. The
cumulative records of this measure were
parsed in the same way as the cumulative
records of the poking proportion, and the
resulting plots of the successive rates of cycling
are shown in the bottom row of Figure 3.

To assess the evolution of the tendency to
match the investment fraction to the income
fraction, we first compute the feeding-by-
feeding income imbalances and investment
imbalances. The imbalance is the difference
between two complementary Herrnstein frac-
tions. Thus, the income imbalance is I1/(I1 +

I2) 2 I2/(I1 + I2) 5 (I1 2 I2)/(I1 + I2). At any
one feeding, the mouse gets a pellet either at
Hopper 1 or at Hopper 2, so the possible
values of the income imbalance at a single
feeding are +1 and 21. The slope of the
cumulative income imbalance is the average
value of the imbalance. If feedings occur
equally often at both Hoppers, the slope is 0;
if they occur only at Hopper 1, it is +1; if only
at Hopper 2, 21. If they occur 75% of the time
at Hopper 1 and 25% at Hopper 2, the slope is
+0.5. Similarly, the investment imbalance is
T1/(T1 + T2) 2 T2/(T1 + T2) 5 (T1 2 T2)/(T1

+ T2). At any one feeding, this can take on any
value between 21 and 1, depending on how
the mouse has distributed its visit durations in
the interval since the previous feeding. As with
the income imbalance, the slope of the

Fig. 3. Upper row: Representative cumulative records of the number of visit cycles as a function of session time,
parsed by the change-point algorithm with a logit decision criterion of 4 (small ovals). Lower row: Slopes of successive
segments of the cumulative record. These slopes are the average cycles per min.
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cumulative investment imbalance is the aver-
age value of this measure. When the slope is 0,
the average duration of a visit to Hopper 2
equals the average duration of a visit to
Hopper 1. When the slope is .5, the mouse is
spending 75% of its total visiting time at
Hopper 1 and 25% at Hopper 2, and so on.
The mouse is matching when the average
investment imbalance equals the average in-
come imbalance, in which case the cumulative
records of the two imbalance scores will have
the same slope. Thus, a purely visual way to
assess matching is to superpose the cumulative
imbalance records and compare their slopes
(Figure 5). The difference in slope between
the two imbalance records is twice the mis-
match, that is, twice the difference between
the income fraction and the investment
fraction.

A second way to assess the evolution of
matching is to compute the feeding-by-feeding
difference between the income and invest-
ment imbalances: (I1 2 I2)/(I1 + I2) 2 (T1 2
T2)/(T1 + T2). When the mouse is matching
the average difference is 0, so the cumulative
record of this imbalance difference is flat. The
slope of the cumulative imbalance difference
is twice the average difference between the
income fraction I1/(I1 + I2) and the invest-
ment fraction T1/(T1 + T2). If the tendency to
match is less initially than later on in training,
or if at some point in training a change in the
investment fraction lags the change in the
income fraction to any appreciable extent,
then the absolute value of the slope of the
cumulative imbalance difference will be great-
er than when the investment fraction has been
adjusted to match the income fraction. Thus,
shifts toward 0 in the slope of the cumulative
imbalance difference suggest a lagged adjust-
ment of the investment fraction to the income
fraction (a shift in the direction of no
difference). The cumulative records of the
imbalance difference are plotted and parsed
in Figure 6.

RESULTS AND DISCUSSION

Conditioned foraging behavior (an elevated
poking proportion) and more rapid cycling
between hoppers emerged abruptly in most
mice, usually at the beginning of a new session
(cf. Papachristos & Gallistel, 2006). We judge
the onsets to be abrupt because the level of
behavior immediately after onset was usually

close to the asymptotic level, as shown by the
plots of the distributions of first fractions
(lower row in Figure 4). In fact, the median
first fraction was very close to 1 for both the
appearance of increased poking proportions
and the appearance of increased rates of
cycling between the hoppers.

As may be discerned from the solid line in
the upper left panel of Figure 4, the median
for the abrupt appearance of a higher pro-
portion of hopper poking in each session
minute was at the start of Session 4, although
there were two poking-proportion onsets at
the start of Session 2 and two more at the start
of Session 3. From the corresponding plot in
the upper right panel of Figure 4, one sees
that the median for the abrupt appearance of
a higher rate of cycling between the two
hoppers was at the start of Session 5, although
there was one such onset at the start of Session
3 and another at the start of Session 4 and one
that did not occur until the start of Session 7.

Matching was present from the outset and it
did not improve in the course of the 20
sessions. This is seen firstly in Figure 5 where,
to facilitate comparison of their slopes, the
records of the cumulative income imbalance
and the cumulative investment imbalance have
been superposed for the first 30 feedings and
the last 30 feedings. It may be seen that the
slopes match equally well (for all but M10)
over the first 30 feedings and the last 30 (and
segments thereof).

It also may be seen, however, that in Mice 1–
3, the slopes of both imbalance functions are
close to 0 over the first 30 feedings whereas
they are clearly positive over the last 30
feedings, as they should be given that the
concurrent random-interval schedule ratio
favored Hopper 1 by 3:1. The slopes are
initially flat because these mice cycled so slowly
at the beginning that there was almost always
a pellet waiting to be harvested when they got
to either hopper. Thus, the effective income
ratio was 1:1 and the matching seen in these
subjects initially might be construed to be an
artifact of their slow cycling.

The question then becomes, when these
subjects began to cycle rapidly enough for the
reward schedules to dominate the income
fraction, did the adjustment in their invest-
ment imbalance lag the change in the income
imbalance? The plots of the cumulative feed-
ing-by-feeding imbalance difference in Fig-
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ure 6 speak to this question. When the
cumulative imbalance difference records in
Figure 6 are parsed with our customary de-
cision criterion of 4 (using the Kolmogorov-
Smirnov test because the differences are real
valued and not normally distributed), none of
the records has any change points. In other
words, using our customary, relatively conser-

vative decision criterion, one would conclude
that in none of the 10 mice did the match
between investment and income change in the
course of the 20 sessions. The Mean Mismatch
plots on the right of Figure 6 come from
parsing the records with the very sensitive
decision criterion of 2. By this analysis, 4 of the
10 mice showed a change in extent of the

Fig. 4. Cumulative distributions of onset latencies and first fractions (the poking proportion immediately after the
first increase divided by the asymptotic poking proportion) for poking proportions (poking per min) and cycling rates
(cycles per min). A cumulative distribution shows the number of subjects giving the value on the x axis or less. The x axis
value at each upward step gives the datum for one subject. The solid lines are the distributions when a conservative
decision criterion is used to parse the cumulative records; the dashed lines are the distributions when a hundredfold-
more-sensitive criterion is used. A dashed horizontal line is drawn at 5 to aid in extracting the medians, which are the
values on the abscissa at which the cumulative distributions cross this line. In the upper panels, the numbered vertical
dashed lines indicate session boundaries. Crit 5 logit decision criterion used in parsing the cumulative records.
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mismatch between the income fraction and
the investment fraction at some point. Howev-
er, in two instances (Mice 2 and 4) matching
was worse after the change (or, in the case of
Mouse 4, changes) than it was initially. In the
other 2 subjects, the approximation to match-
ing was better after the change than before.
However, in 1 of these (Mouse 9), the
improvement was from an initial mismatch of
2.02 to a terminal mismatch of 2.005. In
other words, the subject was matching closely
at all times. In the 4th subject (Mouse 6), the
initial mismatch was 2.065 and the terminal
mismatch was .035. This is the only subject
whose results might be taken to suggest that
matching improved by an appreciable amount
in the course of training.

The transitions from balanced incomes and
hopper preferences to imbalanced incomes
and hopper preferences occurred abruptly in
these subjects (M1–M3) when they began to
cycle rapidly, as shown in Figure 7. The upper
row of Figure 7 plots the complete cumulative
income imbalance and cumulative investment
imbalance records, while the lower row gives
a high-resolution view of these records over
the 30 feedings surrounding the transition
from approximately flat to positively sloped.
The loci of the transition change points found
by the parsing algorithm are circled in the
lower plots. In these plots, it is apparent that
the estimation of a change point, like all
statistical estimates, is surrounded by some
uncertainty. It is impossible to specify with
certainty the particular feeding at which
a change should be deemed to have occurred.
Nonetheless, it is apparent that the changes in
both records are abrupt in all 3 subjects and
that they occur at essentially the same time,
that is, within the limits to simultaneity
judgments imposed by the noise in the data.
Because the changes in the income imbalance
and the investment imbalance occur at essen-
tially the same time, no increase in their
average difference is seen at that time. Such
increases, if they were present, would be
apparent in the slopes of the cumulative
records of their difference in Figure 6. Thus,
Figures 5, 6 and 7 all support the conclusion
that, with the commonly used concurrent
random interval schedules, matching is imme-
diately apparent in the experimentally naive
mouse and does not improve over time. The
data also support the conclusion that abrupt
changes in the income imbalance are accom-
panied by equally abrupt and essentially
simultaneous changes in the investment im-
balance (cf. Gallistel et al., 2001).

EXPERIMENT 2

In Experiment 1, the experienced income
fraction depended somewhat on the mouse’s
sampling behavior, particularly in the early
stages of training when it sampled each
hopper rarely. In this experiment, we elimi-
nated this dependency to the extent possible,
by allowing unharvested pellets to accumulate.
The Poisson process that scheduled the next
pellet set-up did not halt when it set up a pellet.
If it set up a second pellet before the already

Fig. 5. Cumulative records of the feeding-by-feeding
income imbalance (heavy lines) and the investment
imbalance (light lines) for the first 30 and last 30 feedings.
The imbalance is the difference between two complemen-
tary Herrnstein fractions. The number in the upper or
lower left corner of the ‘‘First 30’’ panels identifies the
subject. For Subjects 1–3, the concurrent random-interval
schedules favored Hopper 1 by 3:1; for Subjects 4–6, they
favored Hopper 2, by 3:1; for Subjects 7–10, the schedule
ratio was 1:1. These records are a sequence of steps
because at this resolution one sees every feeding. The
imbalances are only recomputed at each feeding, so their
cumulative record is flat between feedings and steps up or
down at each feeding.
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set-up pellet was harvested, the new pellet was
added to the queue. There was no limit to how
long the queue of to-be-delivered pellets could
become. When the mouse finally sampled the
hopper, the pellets in the queue were de-
livered at 0.2-s intervals, one after the other,
until the queue was emptied. Thus, provided
the mouse sampled both hoppers at least
occasionally, the income fraction at any point
in training could not diverge far from the
programmed value. The programmed values
were 1:3 or 3:1 for all 16 mice in this
experiment.

METHOD

Subjects

This experiment employed 16 mice with the
same specifications as in Experiment 1.

Apparatus

The apparatus used was the same as in
Experiment 1.

Procedure

The procedure was the same as in Experi-
ment 1 except that the scheduling algorithm

Fig. 6. Left: Cumulative feeding-by-feeding difference between the income imbalance and the investment imbalance.
The number in the upper left corner of each panel identifies the subject. The y axis has been scaled so that a difference
equivalent to an average difference in the Herrnstein fractions (average mismatch) of .125 would produce a full-scale
deflection by the end of the record. Right: Plots of the slopes of the cumulative difference records when parsed with
a logit decision criterion of 2. The y axis has been scaled in terms of the difference in the Herrnstein fractions (average
mismatch). Positive mismatches constitute overmatching for the subjects whose schedules favored Hopper 1 (Subjects 1–
3) and undermatching for those whose schedules favored Hopper 2 (Subjects 4–6).
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did not halt when it set up a pellet. It
continued to run, with scheduled pellets
accumulating in a queue, which was emptied
when the mouse sampled a hopper. Also, we
increased session length to 1 hr because the
attempt to eliminate the end-of-session decline
in responding did not succeed. The decline
seems to occur in anticipation of the end of
the session, rather than because the mouse was
satiated. The experiment was run in three
replications, with 5, 5, and 6 mice, respectively.
The numbers of sessions varied from 14 to 18
across replications.

RESULTS AND DISCUSSION

Conditioned foraging behavior again ap-
peared more or less abruptly, and its appear-
ance tended to occur at session boundaries,
although not so clearly as in the preceding
experiment (see the cumulative distributions
in Figure 8). Both the onset latency for the
increase in the proportion of each minute
spent poking and the onset latency for the
increase in the cycling rate occurred after

roughly the same number of session minutes
as in the preceding experiment. For the
poking proportions, median onset latencies
were near 60 and for cycling rate, near 100 or
120 min. Thus, because session lengths were
60 min in this experiment versus only 25 min
in the preceding experiment, onset latencies
occurred in an earlier session in this experi-
ment.

For the increase in poking proportion, the
first fractions clustered around 1 (medians
1.03 or 1.08, depending on parsing criterion;
see Figure 8 lower left), as they did in
Experiment 1. In other words, at its first
increase, poking proportion went to 100% of
its subsequent average value. The onset of
rapid cycling was more graded, as indicated by
the clustering of first fractions around .5
(median .51 or .47, depending on parsing
criterion; see Figure 8 lower right). In other
words, at its first increase, the cycling rate went
to 50% of its subsequent average value.

Analysis of the cumulative records of the
pellets delivered to the two hoppers showed

Fig. 7. Cumulative records of the feeding-by-feeding income and investment imbalances for Subjects 1–3. Upper row:
Complete records. Lower row: Thirty feedings surrounding the initial change in slope. Circles indicate the loci of the
change points found by the parsing algorithm. For the binary-valued data in the records of income imbalance, the
parsing algorithm used the chi square test to compare the proportion of +1 imbalances (feedings at Hopper 1) to the
proportion of 21 imbalances (feedings at Hopper 2) before and after a putative change point. For the real-valued and
not normally distributed data in the records of investment imbalance, it used the two-sample Kolmogorov-Smirnov test.
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that we succeeded in clamping the income
ratio at near the intended 3:1 or 1:3 values
from the outset. Regardless of the decision
criterion used in parsing the cumulative in-
come records, the income fractions showed
only minor departures from the intended
values.

In order to match their investment fraction
to their income fraction in this experiment,
the mice had to accurately assess the randomly
varying intervals between feedings and the
varying numbers of pellets received and
combine these quantities multiplicatively, be-

cause the income from a hopper was the
product of the number of feedings per unit of
session time and the average number of pellets
per feeding. The extent to which subjects
matched varied markedly between subjects, as
shown by Figure 9, which plots the cumulative
records of the feeding-by-feeding income and
investment imbalances. Five of the 16 subjects
matched very accurately (2, 9, 10, 11, and 12—
the numbers on the inside left of the panels in
Figure 9 identify the subjects). The close
correspondence between the slopes of their
income imbalance and investment imbalance

Fig. 8. Cumulative distribution of onset latencies (top panels) and first fractions (bottom panels). (The first fraction
is the poking proportion immediately after the first increase divided by the asymptotic poking proportion.) Crit 5 logit
decision criterion used in parsing the cumulative records. Dashed vertical lines in top panels are session boundaries.
Dashed horizontal lines at the bisection point on the y axis are aids to the extraction of the medians.
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records in Figure 9 is the more impressive
when it is born in mind that a difference in
slope between the income and investment
imbalance records is twice the difference in
the corresponding Herrnstein fractions (the
average mismatch). Eight subjects matched
more or less well (3, 4, 5, 7, 8, 13, and 14)—
how well is shown in Figure 10. Three subjects

did not match, during all or most of the
training (6, 15, and 16).

Generally speaking, how well subjects
matched did not improve in the course of
training. We believe this is apparent in
Figure 9. We could not document it using
the cumulative feeding-by-feeding difference
between the income and investment imbal-

Fig. 9. Cumulative feeding-by-feeding imbalance records from Experiment 2. Heavy lines 5 income imbalance; light
lines 5 investment imbalance. Numbers at middle-left identify the subjects.
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ances, as we did in Experiment 1 (Figure 6),
because in this experiment, where pellets can
queue, the net income imbalance (the imbal-
ance over several feedings) is not equal to the
sum of the feeding-by-feeding imbalances. For
example, if the subject gets 15 pellets on
arrival at Hopper 1, the imbalance for that
feeding is +1; if it next gets 1 pellet at Hopper
2, the imbalance for that feeding is 21. The
sum of the imbalances is 0, so the slope of the
cumulative imbalance record over those two
feedings is zero, but the net imbalance is (15/
16) 2 (1/16) 5 7/8. Thus, we cannot compute
the mismatch feeding by feeding. We must have
recourse to the algorithm for parsing cumula-
tive records into successive segments of pre-
sumed constant slope (constant mean Herrn-
stein fraction), then comparing the slopes as
training progresses by plotting them on com-
mon axes, as in Figure 10. At any point in
training, the estimated mismatch is the differ-
ence between the estimated mean income
fraction and the estimated mean investment
fraction. This is the vertical difference between
the two step-plots in each panel of Figure 10
(See ‘‘1st, 2nd, and Last Diff ’’ in upper left
panel). The first, second, and last differences
between these mean Herrnstein fractions for all
16 subjects are plotted in Figure 11. There is no
significant tendency for the absolute value of
the second or last difference to be smaller than
the absolute value of the first difference (both
paired-comparison t values , 1.5). The same is
true when the records are parsed with a decision
criterion of 2 to see whether a very sensitive
analysis for changes in slopes can pick up short-
lasting large differences at the outset of
training.

In summary, when the income ratio is
clamped from the outset by allowing scheduled
pellets to accumulate in a delivery queue, some
mice match very well, some match only moder-
ately well, and some fail to match, but as soon as
there are sufficient data to estimate the mis-
match, it is on average as small as it will ever be.
Thus, under these conditions, too, mice match
from the outset, insofar as they match at all.

EXPERIMENT 3

In the preceding experiment, we made
income independent of investment; in this
experiment, we make it completely dependent
on investment.

METHOD

Subjects

This experiment employed 18 mice with the
same specifications as in Experiment 1.

Apparatus

The apparatus used was the same as in
Experiment 1.

Procedure

The procedure was the same as in Experi-
ment 1 except that the scheduling algorithm
for a hopper only ran when the subject’s head
interrupted the IR beam across the entrance to
that hopper. This meant that a schedule only
set up a pellet for delivery when the head was
in the hopper, so all pellets were delivered at
the moment they were set up. For all but 4 of
the subjects, the scheduled rates of return
were 0.05 and 0.10 pellets per s of poking time.
For 2, the ratio of programmed returns was
also 2:1 but the rates were halved (to 0.05 and
0.025 pellets/s); for 2 more, the programmed
rates of return were equal (0.05 pellets/s). The
actually obtained returns are given in Table 1.
The experiment was run in three replications,
with 6 mice in each. The number of sessions
varied from 14 to 19 across replications.
Session length was 25 min, as in Experiment 1.

RESULTS AND DISCUSSION

As may be seen from the top panel of
Figure 12, the onset of an increased propor-
tion of poking time occurred somewhat faster
in this experiment than in Experiment 1: the
median onset latency fell either at the begin-
ning of the second session or the beginning of
the third session, depending on the parsing
criterion used. The onset of an increased
poking proportion again tended to be abrupt,
in that the median first fraction was about
0.75, regardless of the parsing criterion (lower
panel of Figure 12), which is to say that when
an increase in the poking proportion first
appeared it was at 75% of its subsequent
average value.

In marked contrast to the preceding two
experiments, there was no onset latency for an
increase in the cycling rate in this experiment,
because the cycling rate did not increase in
any subject. In most subjects, it remained at
a constant low level (0.39 6 0.14 cycles/min, at
asymptote across all subjects), while in 4
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Fig. 10. Successive mean Herrnstein income and investment fractions for the 8 mice that matched only
approximately, as determined by the parsing algorithm with a decision criterion of 4. (Four other mice matched
almost exactly throughout; and 3 did not match during all or most of training—see Figure 9.) The upper left panel gives
the first, second, and last mismatch (income fraction minus investment fraction). The numbers in the upper left corners
identify the subjects.
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subjects, it decreased to that level from an
initially higher level. This asymptotic mean
cycling rate is several times slower than in
Experiments 1 and 2 (1.73 cycles/min and
1.86 cycles/min, respectively). It is almost
three times slower than the slowest rate
observed in the 26 subjects in those experi-
ments. Thus, making income proportional to
investment greatly increases a subject’s ten-
dency to stay at one hopper or the other for
prolonged periods rather than cycle rapidly,
and that effect is apparent very early. The
propensity to devote their time mostly to one
hopper is also evident in the two rightmost
columns of Table 1, which give the numbers of
pellets obtained from each hopper. The ratios
of these numbers generally greatly exceed the
2:1 ratio of rates of return that was pro-
grammed for all but 2 of the subjects. It is
also seen in Figure 13, which plots the
prevalence of the income and preference
fractions in the three experiments. The
prevalence is the proportion of experiment
time during which a fraction of a given
magnitude prevailed. For this computation,
the fractions are binned at intervals of .05 (0–
.05, .05–.1, .1–.15, and so on). In the first two
experiments, fractions near .25 and .75 were
most prevalent, whereas in this third experi-
ment, the fractions that were most prevalent
were at the extremes.

Because the subjects in this experiment
devoted most of their investment to only one
of the hoppers, they, like the subjects in the
preceding two experiments, approximately

matched their investment fractions to their
income fractions throughout the experiment.
In Figure 14, the cumulative income- and
investment-imbalance plots in most subjects
so nearly superpose that only the income plot
is apparent, because it obscures the investment
plot.

The close match between the investment
imbalance and the income imbalance is

Fig. 11. First, second, and last mismatches (income
fraction minus investment fraction).

Fig. 12. Top panel: Cumulative distribution of the time
at which the first increase in poking proportion occurred,
for two different parsing criteria. The dashed vertical lines
indicate session boundaries. Bottom panel: Cumulative
distribution of first fractions. (The first fraction is the
poking proportion immediately after the first increase
divided by the asymptotic poking proportion.)
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present from the outset, and it does not
improve. This is apparent in Figure 14, and it
is confirmed by applying the parsing algorithm
to the cumulative records of the feeding-by-
feeding mismatch scores (income imbalance
minus investment imbalance): in 15 of the 18
subjects, there is no change in the mismatch
score; in 2, there is a small change for the
worse (greater mismatch), and in 1 there is
a change for the better.

The tight and stable matching is the more
remarkable in that the predicted instability in
side preference was observed: In 17 of the 18
subjects, there was at least one reversal of
preference; in most subjects, there were
several such reversals. In these reversals, the
subject abandoned the better side for the
worse side for several successive feedings. In
some cases, the abandoning of the better side
for the worse side was so transient that it is
barely discernible in the low-resolution rec-
ords in Figure 14. However, in all such cases,
the period of almost exclusive preference for
the poorer alternative lasted at least an order
of magnitude longer than average duration of
a visit cycle in Experiments 1 and 2. In several
cases, it lasted for the better part of a session.
In Subject 6, it lasted for more than half the
sessions. In short, when income is strictly
proportional to investment, subjects do match,
which is to say that they spend almost all their
time at one hopper or the other, so they get

almost all of their income from that hopper.
Usually, this is the richer hopper, but the
preference for the richer hopper is unstable;
sudden shifts to almost-exclusive preference
for the poorer hopper are not infrequently
observed. In these shifts, both the income
imbalance and the investment imbalance go
from one extreme to the other within the span
of a single interfeeding interval, as shown in
Figure 15.

One of these reversals is examined in detail
in Figure 16. The upper panel of Figure 16
plots the cumulative records of the poke
durations in the two hoppers (solid lines, left
ordinate) and the cumulative records of pellet
deliveries (dashed lines, right ordinate), as
a function of session time, for the session in
which the reversal occurred. These records
show the abruptness of the reversal. The
estimated point of reversal is indicated by the
vertical line in the middle of the plot. Notice
that the slope of the cumulative record of
pellets obtained after the reversal (the Hopper
2 Pellets record) is less than the slope of the
cumulative record of pellets obtained before
the reversal (the Hopper 1 Pellets record).
These slopes are the incomes (pellets per unit
of session time). Thus, the reversal of prefer-
ence reduced the subject’s income.

The lower panel in Figure 16 plots the
cumulative records of pellet deliveries in the
two hoppers, as functions of cumulative poke

Table 1

Returns and pellets obtained by subjects in Experiment 3.

Subject

Returns (pellets/poke-sec) Total Pellets Obtained

Hopper 1 Hopper 2 Hopper 1 Hopper 2

1 0.11 0.06 819.00 54.00
2 0.11 0.06 628.00 165.00
3 0.11 0.06 898.00 24.00
4 0.12 0.06 819.00 45.00
5 0.11 0.06 810.00 46.00
6 0.11 0.05 392.00 423.00
7 0.07 0.11 23.00 113.00
8 0.06 0.10 71.00 610.00
9 0.06 0.11 163.00 537.00
10 0.06 0.12 25.00 696.00
11 0.06 0.11 132.00 381.00
12 0.05 0.12 43.00 826.00
13 0.10 0.04 368.00 43.00
14 0.12 0.05 405.00 31.00
15 0.06 0.06 218.00 72.00
16 0.05 0.02 248.00 3.00
17 0.06 0.03 415.00 17.00
18 0.05 0.04 388.00 63.00
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times in the two hoppers, during the session in
which the reversal occurred. The vertical line
somewhat to the left of the middle of this plot
is the point of reversal. The plot on the left is
for Hopper 1 up to the moment of reversal;
the plot on the right is for Hopper 2 after the
moment of reversal. The slopes of these plots
are the returns (pellets per s of poking time.
The returns differed by a factor of 2 in favor
of the abandoned investment in the period
immediately surrounding the abandonment.
The subject abruptly abandoned the hopper
that was providing the higher return in favor
of the hopper that provided the lower return,
despite the fact that local fluctuations in the
returns provided no impetus for this reversal.

There are two striking features of these
reversals. First, subjects leave a richer hopper
for a poorer hopper, even though in doing so
they reduce both their return (the amount of
reward per unit of time spent poking) and
their income (the amount of reward per unit
of session time). Second, they do so abruptly.
We stress the abruptness of the reversals in
investment because we believe that it presents
a significant challenge to models that rely on
running averages, as most models do (Dragoi
& Staddon, 1999; Sugrue, Corrado, & New-
some, 2004). Figure 15 shows that a complete
reversal is often observed between one feeding
and the next. Between two feedings, there may
be more than one cycle of visits. Figure 17

shows several maximally abrupt reversals,
reversals that occur between one visit cycle
and the next.

In considering the significance of a large
change in the investment proportion from one
visit cycle to the next, it is important to
consider the combined duration of the invest-
ments made on the cycle immediately follow-
ing the shift. If a subject stays only briefly on
both sides during a visit cycle, then a large shift
in proportion may be ascribed to noise. That
is, a shift from an investment proportion of
0.95 to a proportion of 0.05 in the span of one
visit cycle is of much greater import when
0.0555 s/100 s than when 0.055 .05 s/1 s.
The large changes in proportion from one visit
cycle to the next shown in Figure 17 involve
proportions based on large combined invest-
ments, as shown by the widths of the post-
change steps. Each step in these plots repre-
sents one visit cycle. The width of the step is
the number of minutes in the combined
investment made on that visit cycle.

The widths of the immediate postshift steps
in the plots in Figure 17 are measured in
minutes. These visits to the newly favored side
are orders of magnitude longer than the
investments commonly made in any one side
within a single visit cycle in Experiments 1 and
2. The median visit durations in Experiments 1
and 2 were 3.8 and 1.5 s, respectively, and the
3rd quartile (75th percentile) was reached at
10.26 and 7.24 s, respectively. Thus, the post-
change investments shown in Figure 17 are
outside the range of individual investments
seen under other conditions. Moreover, the
overall rate of reward in this experiment was
higher than in the first two experiments.
Other things being equal, a higher overall
rate of reward shortens the durations of visits
(Gallistel et al., 2001). The long visits shown in
Figure 17 are a consequence of the subjects’
almost-exclusive commitment to one side or
the other. The striking thing about this
commitment is that it can reverse almost
entirely from one visit cycle to the next.

GENERAL DISCUSSION

Mice match the ratio of the times they invest
in foraging at two hoppers to the ratio of the
incomes they have recently received from
those hoppers regardless of the coupling
between their behavioral investments and the

Fig. 13. The prevalence of the income and investment
fractions in the three experiments. Prevalence is the
fraction of the total time that a given range of fractions
prevailed. Ranges are in bins of .05.
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Fig. 14. Cumulative income and investment imbalance records. Where only the income record is apparent, it is
obscuring the investment record. The number at upper or lower left of a panel identifies the subject. For Subjects 2, 6, 7,
9, and 17, thin rectangles superposed on abrupt slope reversals indicate the portions of the records shown at high
resolution in Figure 15.
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incomes they produce. At one extreme, the
incomes are independent of the investments;
at the other, they are strictly proportional to
them. In either case, in experimentally naive
mice, the initial match between the investment
ratio and the income ratio is as good, on
average, as the final match. There is no
tendency for matching to improve as a subject’s
experience with the two hoppers increases.
This suggests to us that matching is innate in
Paul Weiss’s (1941) sense: ‘‘differentiated in
[its] essential characteristics independently of
the actual intervention of function.’’ (p. 7).
The brain of a mouse that has never foraged
between two locations is already programmed
to adjust the ratio of the expected visit
durations to its current estimate of the ratio
of the expected incomes, without regard to the
experienced returns, that is, without regard to
the amounts of reward it has obtained for the
time it has spent or the responses it has made.
In Heyman’s (1982) terminology, matching is
unconditioned behavior; it is insensitive to the
R2.SR contingency.

The subjects’ seeming indifference to the
returns is startling. It appears to be a negation
of the most common interpretation of the law

of effect, the law that behavior is governed
by its consequences. In the instrumental or
operant conditioning literature in psychology
and the reinforcement learning literature in
computer science, this is taken to imply that
subjects adjust the mapping between their
experience—their current representation of
their situation—and their behavior in accord
with the effects of that previous behavior. In
the computer science literature, this mapping
between the perceived current situation and
the chosen action is called the subject’s policy.
The adjustment rule typically imagined is that
policies that have led to greater rewards, that
is, policies with higher experienced returns
have higher value relative to policies with
lower experienced returns. It is further as-
sumed that the relative values of policies
determine the relative likelihood of their
being chosen on the next round (Sutton &
Barto, 1998). In psychology, it is usually
supposed that the behavior that more fre-
quently produces a reward will grow in relative
strength (see, for example, Dragoi & Staddon,
1999). This interpretation of the law of effect
is closely related to the rational-agent assump-
tion in economic theory, the assumption that

Fig. 15. High-resolution cumulative imbalance records covering abrupt reversals. The numbers inside the panels
identify the subject. The portions of the complete records from which these come are indicated by small superposed
rectangles in Figure 14. Each step in one of these records corresponds to a single feeding. Where necessary, the records
have been vertically displaced to superpose them, facilitating comparison of their slopes.
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subjects will, on average and in the long run,
favor actions that produce higher returns
(profits) over actions that favor lower returns.

The assumption that past returns affect
future investments, however formulated, re-
quires that subjects assess their returns. Our
data suggest that they do not; or, at least if they
do, they do not use this assessment when
adjusting their investments. Their policy is to
match their expected investment ratio to their
current estimate of the expected income ratio.
That policy does not change.

Our data emphasize the importance of the
distinction between a subject’s policy and its
model of the world, a distinction emphasized
in the reinforcement learning literature in
computer science, but less so in psychology
and economics. The model of the world is the
subject’s representation of the behavior-rele-
vant aspects of its situation. The policy is the
mapping from this representation to its
behavior. In the present case, we suggest that
the subject’s model of the world is its estimate
of the currently-to-be-expected incomes from
the available foraging locations. What changes
with experience are these estimates, not the
subject’s mapping from them to its temporal
(behavioral) investments.

The maximally abrupt changes in invest-
ment policy frequently seen in the individual
data from Experiment 3 are another theoret-
ically consequential aspect of our data. The
abruptness of these changes poses a challenge
for models in the family of general linear
models (Bush & Mosteller, 1951; Estes &
Burke, 1953), to which most models of
experience-based decision making belong (Ye-
chiam & Busemeyer, 2005). This includes
connectionist models that use the delta rule
and most Bayesian learning models. In a gen-
eral linear model, the expectancies (values,
associative strengths, connection weights), that
is, the quantities that determine choice or
choice probability, are based on averages that
are updated trial by trial or response by
response. The updating involves a weighted
combination of the input on the current trial
and the value of the average after the previous
updating (the previous trial) (see, for exam-
ple, Sugrue et al., 2004). The running average
produced by this kind of updating can move
all the way from one limiting value to the
opposite limiting value in a single update only
if negligible weight is given to the value on the
previous trial. In that case, there is no average;
the model tracks the noise in the input; it has
no memory for earlier inputs; it remembers
only what has just happened. In more complex
versions of the running average idea, there are
parallel running averages with different rates
of decay (e.g., Dragoi & Staddon, 1999).

A distinctive feature of the model of match-
ing that we described in the Introduction and
simulate below is that estimates of expected
incomes are not continually updated as new
data come in. There are no running averages.

Fig. 16. Analysis of an abrupt reversal in Subject 6.
Upper panel plots the cumulative record of poke dura-
tions in the two hoppers (solid lines, left ordinate) and the
cumulative record of pellet deliveries (dashed lines, right
ordinate), as functions of session time. The vertical line in
the middle of the plot indicates the point at which the
investments in, and incomes from the two hoppers
abruptly reversed. This point of reversal is the vertical line
more or less in the middle of the lower panel. To the left
of this reversal point, the lower panel plots the cumulative
record of pellet deliveries against cumulative poke time in
Hopper 1 up to the point of reversal; to the right, the
lower panel plots the cumulative record of pellet deliveries
in Hopper 2 against poke time in Hopper 2 after the point
of reversal. Thin straight lines connect the origins of these
records to their end points. The slopes of these lines are
the average returns (pellets per s invested in a hopper).
Note that the slope of the record on the right (the return
from Hopper 2) is everywhere less than the slope of the
record on the left (the return from Hopper 1).
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Rather, there is a process that looks for
changes in the income streams. A new estimate
of the expected income is made only when this
mechanism signals a change. This makes
possible two striking features of the data from
the third experiment. First, there is the
instability, the swings from almost exclusive
investment in one hopper to almost exclusive
investment in the other. Second, there is the
abruptness with which these reversals occur.
Similarly large and abrupt adjustments in
investment ratios were reported by Gallistel
et al. (2001) in rats and by Dreyfus (1991) in
pigeons—but only when their subjects fre-
quently encountered changes in the relative
rates of reward. Any viable model of matching

must be able to produce these abrupt changes,
in which subjects switch from one investment
ratio to a very different investment ratio within
one or two visit cycles (see also Davison &
Baum, 2000).

Our model produces abrupt changes be-
cause income estimation is discontinuous: an
old income estimate is replaced by a new one
when a change in the income stream is
detected. The new estimate is based only on
the subject’s experience since the time at
which the income stream is estimated to have
changed. Because an old estimate is replaced
by a new one based on an entirely different
sample of the income stream—a sample that is
usually not even temporally contiguous with

Fig. 17. Examples of maximally abrupt reversals. The investment imbalance (heavy solid line, right ordinate) is
plotted against the cumulative investment (cumulative duration of the stays on both sides). Each plot shows a fragment
that includes one or more shifts from one extreme to the other in the span of one or two visit cycles. Each step in these
stair plots represents the investment imbalance during one visit cycle (consisting of a stay at each hopper). If the step’s
elevation is close to +1, the investment was almost entirely in Hopper 1; if it is close to 21, the investment was almost
entirely in Hopper 2. The width of a step is the total investment on that cycle, that is, the combined duration of the two
stays, one at each hopper. The two light lines plot the cumulative excess of the investment in one side over the investment
in the other, again as a function of the total investment. The cumulative excess is positive if more time has been spent at
Hopper 1 and negative if more time has been spent at Hopper 2. The cumulative excess is plotted either as a continuous
function of the cumulative investment (dashed light line) or a step function of the cumulative investment (solid light
line). In the latter case, the plot steps at the end of each visit cycle, which is the point at which the excess for that cycle is
computed. (The aforementioned heavy line is the discrete derivative of this step plot—the ratio of the signed excess on
that visit to the total investment on that visit.) The number at the top of each plot identifies the subject.
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the sample on which the previous estimate was
based—the time-allocation ratio can show
arbitrarily large step changes.

The change-detecting mechanism also
makes it possible for the positive feedback
from the investment ratio to the income ratio
in Experiment 3 to drive the investment ratio
away from the better option toward the poorer
option. Although subjects devote most of their
time to one hopper, they never stop sampling
the other hopper from time to time. Random
fluctuations in this sampling, together with the
randomness inherent in a random rate of
return, will produce apparently significant (in
the statistical sense) increases in the income
stream from the poorer hopper (see below for
illustration). These can divert investment in
the direction of the poorer hopper, leading to
a decrease in the income from the better
hopper, which decrease further diverts in-
vestment away from the better hopper toward
the poorer hopper.

Generalized Linear Models

The relatively few formalized models of
matching that we know of (e.g., Davis et al.,
1993; Davison & Baum, 2000; Sugrue et al.,
2004) are mostly discrete (see Gibbon, 1995,
for one that is not). A discrete model is
elaborated by means of a trial-by-trial or
response-by-response updating rule (learning
rule) for the values (or strengths) of the
behavioral options, together with a rule that
specifies how these translate into choice
probabilities. The updating equation is typi-
cally of the form:

snz1 ~ asn z br , ð3Þ

where sn is the (underlying) strength on trial
n, r is 0 when there is no reinforcement and 1
when there is, and 0 , a , 1. Yechiam and
Busemeyer (2005) call this the general linear
model. In this model, strength approaches
asymptote as sn 2 asn R bp(r), that is, as the
loss of strength due to discounting by the
factor a grows to equal the average increment,
which is the increment (b) due to reinforce-
ment times the probability of reinforcement,
p(r). The relative magnitudes of the increment
parameter, b, and the discount parameter, a,
determine how effective the most recent
reinforcement is relative to the accumulated
effect of past reinforcements: the greater b and

the smaller a, the more rapidly the process
adjusts. For that reason, it is conceptually
helpful to reparameterize Equation 3 with
a single learning rate parameter:

snz1 ~ 1 { cð Þsn z c, ð4Þ

where 0 , c , 1. The greater the learning rate,
c, the more rapidly the system adjusts.

Variants of the general linear model can
accurately predict behavior, including transi-
tional behavior, in discrete-trial paradigms
(Sugrue et al., 2004), provided that they
assume a rapid rate of learning and that the
probability of choosing a response is pro-
portional to its relative strength:

p Rið Þ~ si

�
si z sj

� �
: ð5Þ

The assumption in Equation 5 is the assump-
tion that matching is innate. A MatlabTM script
that simulates matching by response-strength
updating according to 5 may be downloaded
from http://ruccs.rutgers.edu/,galliste/JEAB_
Matching_Simulations.zip. It is based on code
initially written in Basic by Peter Killeen. General
linear models that predict matching with this
response rule do so under assumptions that
make the underlying relative strengths propor-
tional to the relative incomes, which is why
Sugrue et al. (2004) call these strengths ‘‘local
incomes.’’ This must be so, because Equation 5
asserts that the proportion that holds between
the observed response frequencies is the same as
the proportion that holds between the underly-
ing strengths. When we ran simulations of this
model (following Killeen’s lead), we found that
the returns per response are not equated, even
though the response is the event that triggers
updating of strength. The returns per time
invested are equated, even though this measure
of behavior plays no role in the machinery of the
general linear model. In short, the ability of
a general linear model to simulate matching
under these assumptions is consistent with our
claim that matching is innate and based on
income estimates, not on the equation of
returns.

Difficulties in the Application of Discrete Models

In trying to apply discrete models to un-
constrained foraging behavior, formulating
a workable definition of a trial or a response
is difficult. A subjective trial is the interval at
the end of which the subject updates the
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internal variables (response strengths, associa-
tive strengths, return or income estimates, and
so on) that determine the observed pattern of
behavior. If we adopt a discrete updating
model, then the need to postulate internally
determined, behavior-independent intervals at
which updating occurs appears inescapable
(Davison & Baum, 2000; Gallistel & Gibbon,
2000; Gibbon, 1981; Lea & Dow, 1984;
Rescorla & Wagner, 1972). There does not
appear to be a way to make the occurrence of
a trial a function of observable events, either
environmental events or behavioral events
(Gallistel & Gibbon).

Consider then what we might use as the
subjective trial duration in analyzing the
results at hand. In the first two experiments,
the subjects rarely stayed at one hopper for
more than a few seconds. Stays of a fraction of
a second were common. To get stays that short
from a discrete model, we need to assume that
subjective trials last only a small fraction of
a second; let us say 0.1 s. Then, because the
duration of a subjective trial is two or three
orders of magnitude shorter than the intervals
between rewards, most subjective trials are
unreinforced trials. This causes problems,
both for models based on returns and for
models based on incomes.

In the first case, for models based on
returns, the value of the foraging location that
the subject is currently visiting is discounted
on unreinforced trials (of which there are
a great many), while the value of the other
location is not. Thus, the hopper the subject is
currently visiting rapidly loses relative value
during interreinforcement intervals. If we
assume the rate of decay per trial that Sugrue
et al. (2004) found worked best (a time
constant of nine subjective trials, that is
0.9 s), then the hopper being visited loses
90% of its value during any 2-s period without
a feeding and more than 99.99% during any
period in which the cumulative duration of the
unreinforced visits since the last reinforce-
ment exceeds 10 s. (The shorter we assume
subjective trials are, the worse this problem
gets.) Thus, the relative value of the other
option should increase rapidly during un-
rewarded stays. This should make the proba-
bility of terminating a stay increase with the
duration of that stay, but that probability does
not increase (Gibbon, 1995; Heyman, 1979).
Moreover, it should make long stays on one

side impossible, but stays of many seconds are
in fact common.

In the second case, for models based on
incomes, the value of an option not chosen is
discounted on every trial. This income-based
model is unstable: the longer a subject stays
with one option, the more likely it is to
continue with it, because the value of the
option currently being exercised increases
whenever it is reinforced, while the value of
the unexercised option is discounted on every
subjective trial. Thus, the value of an option
not being exercised rapidly becomes orders of
magnitude smaller than the value of the
option being exercised. This stability problem
exists even when modeling discrete-trial prob-
ability matching. To surmount this problem,
Sugrue et al. (2004) assumed that the running
averages of incomes did not decay to zero but
rather to some small minimum. In the
continuous case, however, there are long
sequences of trials where both options are
not reinforced, causing both running averages
to decay down to the limiting value, making
the choices equally probable regardless of the
relative rates of reward.

Worse, however, is the problem we confront
when we apply the assumption that subjective
trials last only a fraction of a second to the
results from Experiment 3. In this experiment,
the subjects not uncommonly stayed on one
side for many minutes. The average interval
between rewards measured on a clock that ran
only when the subject’s head was in the
hopper was 10–20 s. During a stay, the head
was in the hopper only on the order of 40% of
the time, so the interreward intervals mea-
sured on a clock that ran only during a stay was
on the order of 25–50 s, and sometimes much
longer. If a subjective trial lasts on the order of
0.1 s, then between successive reinforced sub-
jective trials, there are commonly hundreds of
unreinforced subjective trials, sometimes thou-
sands.

Instead of assuming a fixed value for the
duration of a subjective trial, it is tempting to
make subjective trial duration proportional to
the expected interval between rewards. Then,
the greater the temporal density of rewards in
an environment is, the shorter the subjective
trial duration becomes. That assumption
makes the just-described incompatibility be-
tween the results of the first two experiments
and the results of the third experiment worse,
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because the overall rate of reward was higher
in the third experiment than in the first two,
which would make the duration of a subjective
trial in Experiment 3 shorter than in Experi-
ments 1 and 2.

Similar difficulties arise in models that
update response-by-response rather than trial-
by-trial. In our paradigm, which we take to be
closer to natural foraging than are paradigms
that use an artificial manipulandum, the
mouse shuttles back and forth between the
two hoppers. When it is at a hopper, it pokes
its head in and out. Usually, it does so rather
rapidly. However, the durations of pokes vary
by two orders of magnitude. Some last only
a 50th of a second; some last several seconds.
The number of pokes recorded depends
strongly on where the mouse pokes in relation
to the IR beam. When it pokes only so far that
its nose partially interrupts the beam, one gets
high frequency poke jitter. Some mice tend to
do this, whereas others poke further in.

We cannot call a visit a response, because
then there are visits with multiple reinforce-
ments spaced in time. The general linear
model is not easily modified to take account
of multiple reinforcements for a single re-
sponse. Even when we treat single pokes as
responses, it can happen that more than one
pellet is delivered during a single poke. That is
sufficiently rare that we could perhaps ignore
such instances. But is a .02-s poke to be
counted the same as a 2-s poke, despite the
100-fold difference in duration? And what
about a 1-s-long sequence of jitter pokes,
containing 20 pokes? Should this be counted
as 20 responses in 1 s? In short, it is no small
challenge to say what aspect of the naturally
foraging animal’s behavior constitutes a re-
sponse. Answering that question is a precondi-
tion for applying a response-based updating
model to our data.

Response definitions that might work for
Experiments 1 and 2, where visits lasted at
most a few seconds, will not work for Exper-
iment 3, where visits lasted minutes. The
problem is similar to the problem that arises
with trial-based updating: To get abrupt
transitions one needs a high learning rate
parameter—a value of c in Equation 5 on the
order of .1 or higher. Then, however, the
effects of past reinforcement on strength are
strongly discounted after each nonreinforced
response, in which case long sequences of

unreinforced pokes, which were common in
Experiment 3, reduce response strength to
a negligible level.

This last difficulty reminds us that both trial-
based models and response-based discrete
updating models have the property that the
longer a run of unreinforced responses grows,
the more probable the switch to the other
location becomes. The absence of such a pattern
in the data is what led Heyman (1982) to suggest
that matching was unconditioned behavior.

In summary, running average models of
matching have often been developed within
the context of discrete-trial or discrete-re-
sponse paradigms. It is not clear how to apply
them to a free-foraging paradigm, for reasons
that Lea and Dow (1984) analyzed at some
length. The problem is to find a principled way
to define a trial or a response. The difficulty
does not confront the model we propose,
because the income estimates in this model
are not running averages and because visit
durations are clearly defined.

Simulation

Because the behavior in Experiment 3
is so counter-intuitive, the claim that the
model of matching elaborated in the Intro-
duction predicts this behavior may be as
mysterious as the behavior itself. To confirm
that the model does predict such behavior,
and as an aid to understanding its properties,
one of us (DG) has developed a computer
simulation in MatlabTM, the code for which
may be downloaded from http://ruccs.rutgers.
edu/,galliste/JEAB_Matching_Simulations.zip.

Here, we first show how a simulation based
on Equations 1 and 2 generates results similar
to those seen in Experiments 1 and 3 and then
discuss in detail how it can generate an abrupt
and persistent change to a less-desirable
location, as seen in Experiment 3. In the
simulation, pellet delivery and expected stay
durations are simulated by random-rate pro-
cesses; thus, each simulation represents an
individual animal’s unique experience with
a probabilistic environment. The output of the
simulation is a second-by-second record of
time allocation between two locations (hereaf-
ter referred to as hoppers).

To see the model’s behavior in its most basic
form, consider the left panel of Figure 18.
Depicted are the results of a representative
simulation when the RI schedule at Hopper 1

192 C.R. GALLISTEL et al.



is twice as rich as the RI schedule at Hopper 2,
and no change detection algorithm is applied
to the income stream. The top graph depicts
cumulative location preference and cumula-
tive income imbalance. That the two cumula-
tive records fall close to one another means
that the simulation has generated matching
behavior. This may be seen in a different way
in the bottom graph, which depicts the
sequence of Herrnstein fractions generated
by parsing the cumulative preference and
imbalance vectors with the previously de-
scribed change-point algorithm. Note that
the Herrnstein fractions for preference and
income are generally close together and that
they hover around a value of 2/3, meaning
that twice as much time is spent and twice as
much income is obtained at Hopper 1.

The middle of Figure 18 depicts a second
simulation with the same input parameters as
the first, except this time with the addition of
the change-point algorithm applied to the
interreward intervals. This is how the model
simulates the conditions of Experiment 1. It
might be somewhat surprising that change-
points are found at all in this condition, as the
models starts out with the assumption that
time allocation matches programmed sched-
ules. Why should it change if it’s right to begin
with? The answer is that both income delivery
times and visit durations are probabilistic.
Sometimes, by chance, it arises that there is
statistical backing in favor of an income that
differs from the programmed rate. This is
inevitable when a sensitive change-detector
operates in a probabilistic environment: soon-

Fig. 18. Representative simulations under three conditions. Top panels: Cumulative records of feeding-by-feeding
income and preference differences. Bottom panels: Mean Herrnstein fraction between change points, after parsing
cumulative records with a logit decision criterion equal to 2. Left: Income independent of behavioral investment, no
change-detection mechanism. Middle: Income independent of investment, change-detecting mechanism added. Right:
Income proportional to behavioral investment, with change detection.
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er or later, it will detect a change when there is
none. The lower the decision criterion is, the
more often spurious changes will be detected.

The right of Figure 18 depicts a third
simulation, identical to the last but with one
exception. The clock that decides when to
deliver a pellet to a hopper runs only when the
animal is at that hopper. This is how the pellet
deliveries were scheduled in Experiment 3,
producing very long stays at the richer
location, with occasional abrupt switches to
the poorer location, where the mice some-
times stayed for long intervals. What can be
seen in the rightmost graphs of Figure 18 is
that the model also generated this general
pattern of behavior.

Figures 19 and 20 each depict nine simula-
tions under the conditions of Experiments 1
and 3, respectively. Each panel within the

figures is a plot of the investment and income
imbalances between change points. These
simulations differ from those in Figure 18 in
how the simulations were initiated. Here,
expected stay durations at the two locations
were set as equal until both locations pro-
duced a reward, after which the first sequences
of expected visit durations were generated.
This is more like the situation faced by the
experimental mouse that has no way of
knowing which location is preferable at the
outset. Matching is seen in both figures, but
the patterns are otherwise very different.
When the clock runs independent of behavior,
matching occurs because, within a typical
cycle, animals spend about twice as much time
at the location that delivers rewards twice as
often (Figure 19). When the running of the
scheduling clock depends on where the sub-

Fig. 19. Between-change-point Herrnstein fractions at the richer location in nine random simulations, with income
independent of behavioral investment. Change-point logit criterion 5 2. Hoppers 1 and 2 delivered rewards on RI 20-s
and RI 40-s schedules, respectively.
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ject is, matching occurs because on each cycle
simulated subjects spend the vast majority of
time at one location or the other and so get
almost all rewards from that location (Fig-
ure 20).

To better understand the unstable behavior
of the model in Figure 20, consider the
simulation shown in Figure 21. In the top
three panels, the simulated animal spent most
of its time at the richer location before
suddenly shifting to and remaining at the
poorer location. The graphs in the left and
middle panels are the already familiar plots of
cumulative imbalance and average Herrnstein
fractions. The graph in the right panel shows
cumulative preference for the richer location
on a second-by-second basis. Superimposed
are change points in the subjective income
estimates for the richer location (circles) and

the poorer location (squares). Our focus is on
the abrupt transition from the richer to the
poorer hopper in the part of the record
delineated by the dashed rectangular box.

The occurrence of this switch is simply
a product of chance. After 617 s at the richer
location, the simulated animal moved to the
poorer location, to remain for 81 s. Although
the income estimates from which these stay
times derived also happened to differ by
almost a factor of eight, the stay durations
were both several times longer than average.
Usually, an unusual event such as this is
needed to prompt a prolonged shift to the
poorer hopper. In this case, after 61 of 81 s at
the poorer hopper, two rewards were delivered
in the span of 4 s. Because these were the first
rewards received at that hopper in 753 s of
session time (most of which was spent else-

Fig. 20. Between-change-point Herrnstein fractions at the richer location in nine random simulations, with income
proportional to behavioral investment. Change-point logit criterion 5 2. Hoppers 1 and 2 delivered rewards on RI 20-s
and RI 40-s schedules, respectively, where I is the time on the clock that ran only when the head was in that hopper.
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where), this led to a change to a high income
estimate for the poorer hopper. The change
was detected because there was such a long
period of time preceding the two rewards
when none was delivered at that hopper,
mostly because visits there were widely spaced

and brief. The longer a hopper has gone
without delivering a pellet, the lower the
estimated income from it becomes, and the
easier it is for chance to produce a significant
increase in that estimate. This is a kind of
negative feedback in that neglecting a hopper

Fig. 21. A simulation under the conditions of Experiment 3. Top Left Panel: Cumulative record of feeding-by-feeding
income and preference differences. Top Middle Panel: Between-change-point Herrnstein fractions for income and
preference. Top Right Panel: Second-by-second cumulative record of investment imbalance (preference) for the rich
hopper (Hopper 1). Preference is 1 if the second was spent at the richer location and 21 if it was spent at the leaner
location. Open circles mark changes in income estimates for the richer location. Open squares mark changes in income
estimates for the poorer location. The dashed rectangle indicates the period covered by the plots of returns in the lower
panels. Bottom Left Panel: Cumulative feeding-by-feeding return for the 40 richer location feedings that preceded the
switch to the poorer location. Bottom Right Panel: Cumulative return for the 40 poorer location feedings that followed
the switch. The schedules for Hoppers 1 and 2 delivered rewards on RI 20-s and RI 40-s schedules, respectively, where I is
the time on the clock that ran only when the head was in that hopper.
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for long periods of time sets up conditions that
favor a positive change in the income estimate
for that hopper, and any such increase
counteracts the previous tendency to neglect
the hopper.

In this case, the new income estimate for the
poorer hopper was sufficiently high that the
richer hopper was neglected. After 129 s
without reward at the richer hopper (because
the simulated subjects spent almost all of that
time at the poorer hopper), the income
estimate for the richer hopper diminished,
leading to even less time spent there. Neglect
leading to greater neglect is an example of
positive feedback in the model.

The bottom panels of Figure 21 show
cumulative returns at the richer and poorer
hoppers for the time surrounding the switch
from the richer to the poorer hopper. The left
panel shows cumulative return at the richer
hopper for the 40 feedings immediately pre-
ceding the switch, and the right panel shows
cumulative return at the poorer hopper for
the 40 feedings immediately following the
switch. If behavior were based on returns,
then there would be no reason for the
enduring switch to the poorer hopper, be-
cause the return there after the switch is
consistently lower than the return at the better
hopper prior to the switch. Thus, the model
generates shifts from the better investment to
the poorer in the absence of evidence that the
returns have changed. This is the most
paradoxical of the behavioral findings.

In the other situation, where the clock runs
independently of behavior (Experiment 1,
Figure 19), the probability of reward at a hop-
per increases as time is spent at the other
hopper. Because of this, and because hoppers
are never fully neglected, it is difficult for
there to be long stretches when no reward is
obtained at one of the two hoppers. This
prevents both the negative and positive feed-
back that cause the model to abruptly switch
from one prolonged investment to another
prolonged investment. For this reason, the
model generates different patterns of behavior
for the situations corresponding to those of
Experiments 1 and 3, patterns of behavior that
appear to capture many of the elements of the
observed mouse behavior.

The only free parameters in this model are
the decision criterion in the change-point
algorithm and a, the constant of proportion-

ality between overall income and the cycling
rate. The values of both are narrowly con-
strained by a priori considerations. Models of
animal learning and behavior that generate
second-by-second simulated data records of
free-operant behavior that are difficult to
distinguish from the records generated by
the subjects themselves are rare. It is of some
interest that a model with only two narrowly
constrained free parameters can come close to
passing Church’s ‘‘Turing’’ test (Church &
Guilhardi, 2005) of formally specified (hence,
simulatable) models of behavior.

Conclusions

The experimentally naive mouse is initially
wary of feeding hoppers and pokes into them
infrequently. Its rate of poking increases
abruptly after a few sessions, usually at the
start of a new session. If the income to be
obtained by poking is more or less indepen-
dent of the visit frequency, then it abruptly
begins to cycle rapidly between the hoppers, at
or soon after the increase in its rate of poking.
In contrast, when income is proportional to
investment, the initially low rate of cycling
remains low and may go even lower, because
subjects remain on one side for many succes-
sive feedings. This almost never happens when
income is more or less independent of in-
vestment. Thus, the coupling between invest-
ment and income or the lack thereof has
a dramatic effect on the pattern of investment.
However, in all cases, the investment ratio
approximately matches the income ratio, and
it does so from the beginning.

When income is proportional to investment,
investment is usually concentrated at the
richer hopper, which is economically rational.
However, this concentration is unstable: sub-
jects not infrequently abandon the richer
option to make a prolonged investment in
the poorer option, even though the income
thus obtained is less than the income they
would have obtained had they continued to
invest in the richer option. Changes in in-
vestment track changes in income very closely
and investment can swing from one extreme to
the other with maximum abruptness, that is,
from one visit cycle to the next.

The results strongly constrain possible mod-
els of matching. It is, for example, unclear that
these results are consistent with any model that
assumes that behavioral change is based on an
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estimate of the amount of reward obtained for
a given amount of behavior (that is, on the
estimation of returns). It also is unclear how
any model that assumes a running average of
either incomes or returns could predict the
observed abruptness of the changes in in-
vestment. A purely feed-forward model that
makes episodic, non-overlapping, small-sam-
ple estimates of income accounts for our
findings.

REFERENCES

Balsam, P. D., Fairhurst, S., & Gallistel, C. R. (in press).
Unsignaled unconditioned stimuli degrade contin-
gencies by changing cycle time and temporal un-
certainty. Journal of Experimental Psychology: Animal
Behavior Processes.

Belke, T. W. (1992). Stimulus preference and the
transitivity of preference. Animal Learning & Behavior,
20, 401–406.

Bush, R. R., & Mosteller, F. (1951). A mathematical
model for simple learning. Psychological Review, 58,
313–323.

Catania, A. C. (1963). Concurrent performances: A
baseline for the study of reinforcement magnitude.
Journal of the Experimental Analysis of Behavior, 6,
299–300.

Church, R. M., & Guilhardi, P. (2005). A Turing test of
a timing theory. Behavioural Processes, 69, 45–58.

Davis, D. G., Staddon, J. E. R., Machado, A., & Palmer, R.
G. (1993). The process of recurrent choice. Psycholog-
ical Review, 100, 320–341.

Davison, M., & Baum, W. M. (2000). Choice in a variable
environment: Every reinforcer counts. Journal of the
Experimental Analysis of Behavior, 74, 1–24.

Dragoi, V., & Staddon, J. E. R. (1999). The dynamics of
operant conditioning. Psychological Review, 106, 20–61.

Dreyfus, L. R. (1991). Local shifts in relative reinforcement
rate and time allocation on concurrent schedules.
Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 17, 486–502.

Estes, W. K., & Burke, C. J. (1953). A theory of stimulus
variability in learning. Psychological Review, 60,
276–286.

Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and
conditioning. Psychological Review, 107, 289–344.

Gallistel, C. R., Mark, T. A., King, A. P., & Latham, P.
(2001). The rat approximates an ideal detector of
changes in rates of reward: Implications for the law of
effect. Journal of Experimental Psychology: Animal Behav-
ior Processes, 27, 354–372.

Gallistel, C. R., Balsam, P. D., & Fairhurst, S. (2004). The
learning curve: Implications of a quantitative analysis.
Proceedings of the National Academy of Sciences, 101,
13124–13131.

Gibbon, J. (1981). The contingency problem in autoshap-
ing. In C. M. Locurto, H. S. Terrace, & J. Gibbon
(Eds.), Autoshaping and conditioning theory (pp.
285–308). New York: Academic.

Gibbon, J. (1995). Dynamics of time matching: Arousal
makes better seem worse. Psychonomic Bulletin &
Review, 2, 208–215.

Glover, S., & Dixon, P. (2004). Likelihood ratios: A simple
and flexible statistic for empirical psychologists.
Psychonomic Bulletin & Review, 11, 791–807.

Gottlieb, D. A. (2005). Acquisition with partial and
continuous reinforcement in rat magazine approach.
Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 31, 319–333.

Gottlieb, D. (2006). Is the number of trials a learning-relevant
parameter? Manuscript submitted for publication.

Herrnstein, R. J. (1961). Relative and absolute strength of
response as a function of frequency of reinforcement.
Journal of the Experimental Analysis of Behavior, 4,
267–272.

Herrnstein, R. J., & Loveland, D. H. (1975). Maximizing
and matching on concurrent ratio schedules. Journal
of the Experimental Analysis of Behavior, 24, 107–116.

Herrnstein, R. J., & Prelec, D. (1991). Melioration: A
theory of distributed choice. Journal of Economic
Perspectives, 5, 137–156.

Heyman, G. M. (1979). A markov model description of
changeover probabilities on concurrent variable-in-
terval schedules. Journal of the Experimental Analysis of
Behavior, 31, 41–51.

Heyman, G. M. (1982). Is time allocation unconditioned
behavior? In M. Commons, R. Herrnstein, & H.
Rachlin (Eds.), Quantitative analyses of behavior: Vol. 2.
Matching and maximizing accounts (pp. 459–490).
Cambridge, MA: Ballinger Press.

Higa, J. J., Thaw, J. M., & Staddon, J. E. R. (1993). Pigeons’
wait-time responses to transitions in interfood-interval
duration: Another look a cyclic schedule perfor-
mance. Journal of the Experimental Analysis of Behavior,
59, 529–541.

Hinson, J. M., & Staddon, J. E. R. (1983). Matching,
maximizing, and hill-climbing. Journal of the Experi-
mental Analysis of Behavior, 40, 321–331.

Kass, R. E., & Raferty, A. E. (1995). Bayes factors. Journal of
the American Statistical Association, 90, 773–795.

Keller, J. V., & Gollub, L. R. (1977). Duration and rate of
reinforcement as determinants of concurrent re-
sponding. Journal of the Experimental Analysis of
Behavior, 28, 145–153.

Killeen, P. R. (1985). Incentive theory IV: Magnitude of
reward. Journal of the Experimental Analysis of Behavior,
143, 407–417.

Killeen, P. R., & Bizo, L. A. (1998). The mechanics of
reinforcement. Psychonomic Bulletin & Review, 5,
221–238.

Killeen, P. R., Hanson, S. J., & Osborne, S. R. (1978).
Arousal: Its genesis and manifestation as response
rate. Psychological Review, 85, 571–581.

Lea, S. E. G., & Dow, S. M. (1984). The integration of
reinforcements over time. In J. Gibbon, & L. Allan
(Eds.), Timing and time perception: Vol. 423 (pp.
269–277). New York: Annals of the New York Academy
of Sciences.

Leon, M. I., & Gallistel, C. (1998). Self-stimulating rats
combine subjective reward magnitude and subjective
reward rate multiplicatively. Journal of Experimental
Psychology: Animal Behavior Processes, 24, 265–277.

Nevin, J. A. (1979). Overall matching versus momentary
maximizing: Nevin (1969) revisited. Journal of Experi-
mental Psychology: Animal Behavior Processes, 5, 300–306.

Neuringer, A. J. (1967). Effects of reinforcement magni-
tude on choice and rate of responding. Journal of the
Experimental Analysis of Behavior, 10, 417–424.

198 C.R. GALLISTEL et al.



Papachristos, E. B., & Gallistel, C. R. (2006). Autoshaped
head poking in the mouse: A quantitative analysis of
the learning curve. Journal of the Experimental Analysis of
Behavior, 85, 293–308.

Paton, J., Belova, M. A., Morrison, S. E., & Salzman, C. D.
(2006, February 16). The primate amygdala repre-
sents the positive and negative value of visual stimuli
during learning. Nature, 439, 865–870.

Real, P. G. (1983). A time-series analysis of changeover
performance on concurrent variable-interval sched-
ules. Animal Learning & Behavior, 11, 255–265.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effectiveness
of reinforcement and nonreinforcement. In A. H.
Black, & W. F. Prokasy (Eds.), Classical conditioning II
(pp. 64–99). New York: Appleton-Century-Crofts.

Schwartz, G. (1978). Estimating the dimension of a model.
The Annals of Statistics, 6, 461–464.

Shettleworth, S. J., Krebs, J. R., Stephens, D. W., & Gibbon,
J. (1988). Tracking a fluctuating environment: A study
of sampling. Animal Behaviour, 36, 87–105.

Skinner, B. F. (1976). Farewell, my lovely! Journal of the
Experimental Analysis of Behavior, 25, 218.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004,
June 18). Matching behavior and the representa-
tion of value in the parietal cortex. Science, 304, 1782–
1787.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning.
Cambridge, MA: MIT Press.

Weiss, P. (1941). Self-differentiation of the basic patterns
of coordination. Comparative Psychology Monographs, 17,
1–96.

Yechiam, E., & Busemeyer, J. R. (2005). Comparison of
basic assumptions embedded in learning models for
experienced-based decision making. Psychonomic Bul-
letin & Review, 12, 387–402.

Received: October 27, 2005
Final acceptance: November 17, 2006

IS MATCHING INNATE? 199


